REFERENCES:
1. A. P. Oskolkov, Initial-boundary value problems
for the equations of motion of Kelvin–Voigt fluids and Oldroyd fluids, Trudy Math. Inst.
Steklov, 179, 126-164,
1989.
2. A. P. Oskolkov, Nonlocal
problems for the equations of motion of Kelvin-Voigt fluids, Journal of
Mathematical Sciences, 75, 2058-2078, 1995.
3. G. A. Sviridyuk, On a model
of the dynamics of a weakly compressible viscoelastic fluid, Russian
Mathematics, 38, 59-68, 1994.
4. G. A. Sviridyuk and T. G. Sukacheva,
On the solvability of a nonstationary
problem describing the dynamics of an incompressible viscoelastic fluid,
Mathematical Notes, 63, 388-395, 1998.
5. O. A. Ladyzhenskaya, On the
global unique solvability of some two-dimensional problems for the water
solutions of polymers, Journal of Mathematical Sciences, 99, 888-897, 2000.
6. M. Kaya and A. O. Celebi,
Existence of weak solutions of the
g-Kelvin-Voight equation, Mathematical and Computer Modelling, 49, 497-504, 2009.
7. M. O. Korpusov
and A.
G. Sveshnikov, Blow-up of
Oskolkov’s system of equations, Sbornik: Mathematics, 200, 549-572, 2009.
8. O. P. Matveeva
and
T. G. Sukacheva,
On a homogeneous model of the
non-compressible viscoelastic Kelvin-Voigt fluid of the non-zero order,
Journal of Samara State Technical University, 5, 33-41, 2010.
9. T. G. Sukacheva
and A. O. Kondyukov,
On a class of Sobolev type equations,
Bulletin of the South Ural State University. Series Mathematical Modelling,
Programming and Computer Software, 7,
5-21, 2014.
10. W. J. Layton and L. G. Rebholz, On
relaxation times in the Navier-Stokes-Voigt model, International Journal
of Computational Fluid Dynamics, 27, 184-187, 2013.
11. M. A. Ebrahimi and M. Holst, The
Navier–Stokes–Voight model for image inpainting, IMA Journal of Applied
Mathematics, 78, 869-894, 2013.
12. B. Straughan, Thermosolutal
Convection with a Navier-Stokes-Voigt fluid, Applied Mathematics & Optimization, 84, 2587-2599, 2021.
13. B. Straughan, Instability
thresholds for thermal convection in a Kelvin–Voigt fluid of variable order,
Rendiconti del Circolo Matematico di Palermo Series 2, 71, 187-206,
2022.
14. Sunil and
A. Mahajan, A nonlinear
stability analysis for magnetized ferrofluid heated from below,
Proceedings of the Royal Society A, 464, 83-98, 2008.
15. Sunil and
R. Devi, Global stability
for thermal convection in a couple stress fluid saturating a porous medium with
temperature pressure dependent viscosity: Galerkin method, International
Journal of Engineering, 25, 221-229, 2012.