REFERENCES:
[1] Maxwell, J.C.: On the Dynamical Theory of Gases. Phil.
Trans. Roy. Soc. New York.157, 49–88 (1867).
[2] Chester, M.: 1963. Second Sound in Solids. Phys. Rev. Lett.131,2013–2015.
[3] Chandrasekharaiah, D.S.: Thermoelasticity with second
sound—a review. Appl. Mech. Rev. 39, 355–376
(1986).
[4] Ackerman, C.C., Overtone, W.C.: Second sound in
helium-3. Phys. Rev. Lett. 22, 764–766 (1969).
[5] Ackerman, C.C., Bentman, B., Fairbank, H.K.,
Krumhansal, R.A.: Second sound in helium. Phys. Rev. Lett. 16, 789–791 (1966).
[6] Green, A.E., Naghdi, P.M.: Thermoelasticity without
energy dissipation. J. Elasticity. 31,
189–208 (1993).
[7] Lord, H.W., Shulman, Y.: The generalized dynamical
theory of thermoelasticity. J. Mech. Phys. Solids. 15, 299–309 (1967).
[8] Green, A.E., Lindsay, K.A.: Thermoelasticity. J.
Elasticity. 2, 1–7 (1972).
[9] D. V. Strunin,
On characteristic times in generalized thermoelasticity, Journal of Applied
Mathematics 68 (2001) 816 -817.
[10] Chandrasekharaiah, D. S.: Thermoelastic Rayleigh waves
without energy dissipation. Mech. Res. Comm. 24, 93-101(1997)
[11] Chandrasekharaiah, D. S., Srinath,K. S.:Thermoelastic
interactions without energy dissipation due to a line heat source. Acta Mech.128,
243-251 (1998).
[12] Othman, M. I. A., Song, Y.: The effect of rotation on
the reflection of magneto-thermoelastic waves under thermoelasticity without
energy dissipation. Acta Mech.184,
189–204 (2006).
[13] Roychoudhuri S. K., Bandyopadhyay, N.: Thermoelastic
wave propagaion in a rotating elastic medium without energy dissipation. Int. J.
Math. & Math.Sci.1, 99–107(2005).
[14] Chandrasekharaiah, D. S., Srinath, K. S.:Thermoelastic waves without
energy dissipation in an unbounded body with a spherical cavity. Int. J. Math.
& Math. Sci. 23, 555–562 (2000).
[15] Zelentsov, V. B.:
An asymptotic method of solving transient dynamic contact problems of
the theory of elasticity for a strip. J.
Appl. Math. Mech. 66, 841-855 (2002).
[16] Kirova, R., Georgiev, V., Rubino, B., Sampalmieri, R.,
Yordanov, B., Asymptotic behavior for linear and nonlinear elastic waves in
materials with memory. J. Non-Crystalline
solids. 354, 4126-4137 (2008).
[17] Ryabenkov, N. G., Faizullina, R.F.: The common
asymptotic nature of methods of solving problems of the theory of elasticity
for slabs and plates. J. Appl. Math. Mech. 70, 399-407 (2006).
[18] Aghalovyan, L. A.: Asymptotic of solutions of
classical and non-classical boundary value problems of statics and dynamics of
thin bodies, Int. Appl. Mech. 38, 3-24 (2002).
[19] Aghalovyan, L. A.: An asymptotic method for solving
three-dimensional boundary value problems of statics and dynamics of thin
bodies. Proceeding of IUTAM Symposium on
the relations of shell, plate, beam and 3D models (Tbilisi. Georgia, April
23-27, 2007). Springer.1-20 (2008).
[20] Aghalovyan, L. A.:On one method of solution of
three-dimensional dynamic problems for layered elastic plates and applications
in seismology and seismo steady constructions. Proceeding of Fourth European
Conference on Structure Control, Saint-Petersburg, Russia.1, 25-33 (2008).
[21] Aghalovyan, L.A.:
Asymptotic theory of anisotropic plates and shells. Proceeding of National
Academy of Sciences of Armenia, Mechanics, 62, 5-39 (2009).
[22] Aghalovyan, L. A., Gevorgyan, R. S.: Non-classical
boundary-value problems of anisotropic layered beams, plates and shells,
Yerevan, Publishing house of the National Academy of Sciences of Armenia. 468
(2005).
[23] Aghalovyan, L. A., Aghalovyan, M. L.: Asymptotics of
free vibrations of anisotropic plates fastened with an absolutely rigid base,
Modern problems of deformable bodies Mechanics, Collection of papers, Vol.1
(Dedicated to the memory of Prof. Pericles S. Theocaris), Yerevan, published by
Gitutyun NAS RA. 8-19 (2005).
[24] Aghalovyan, L. A., Ghulghazaryan, L. G.:Asymptotics solutions of non-classical
boundary-value problems of the natural vibrations of orthotropic shells. J. Appl.
Math. Mech. 70, 102-115 (2006).
[25] Agalovyan, L.A.,
Gevorkyan, R. S.:Asymptotic solution of
the first boundary-value problem of the theory of elasticity of the forced vibrations
of an isotropic strip. J. Appl. Math. Mech.72, 452–460 (2008).
[26] Gales, C.: On the asymptotic spatial behavior in the
theory of mixtures of thermoelastic solids. Internal. J. Solids Struct. 45, 2117-2127
(2008).
[27] Gevorgyan, R. S.: Asymptotic solution of coupled
dynamic problems of thermoelasticity for isotropic plates. J. Appl. Math. Mech.72, 87-91 (2008).
[28] Losin, N. A.: Asymptotics of flexural waves in
isotropic elastic plates. ASME J. Appl.
Mech. 64, 336–342 (1997).
[29] Losin, N. A.:
Asymptotics of extensional waves in isotropic elastic plates. ASME J.
Appl. Mech. 65, 1042–1047(1998).
[30] Losin, N. A.: On the equivalence of dispersion
relations resulting from Rayleigh-Lamb frequency equation and the operator
plate model. J. Vib. Acoust. 123,
417-420 (2001).
[31] Sharma, J. N., Kumar, R.: Asymptotics of wave motion
in transversely isotropic plates. J. Sound Vib. 274, 747–759 (2004).
[32] Sharma, J. N., Sharma, P.K., Rana, S.K.: Flexural and
transversal wave motion in homogeneous isotropic thermoelastic plates by using
asymptotic method. J. Sound Vib. 329, 804–818 (2010).
[33] Protsenko, A.M.: Asymptotics of wave problems for a
cylindrical shell (Izvesic ANSSSR). J. App. Math. Mech.44, 507–515 (1980).
[34] Chandrasekharaiah, D. S., Thermoelastic plane waves without
energy dissipation. Mechs. Res. Comm.23, 549-555 (1996).
[35] Achenbach, J. D.: Wave propagation in elastic solids.
North-Holland Publishing Company- Amsterdam London (1973).
[36] Sharma, P.K., Sharma, J. N., Rana , S. K.: Application
of asymptotic method in the theory of thermoelasticity without energy
dissipation.Proceedings of 54th Congress of ISTAM Dec 18,-21, 2009, New
Delhi,67-74 (2009).
[37] Sharma, J. N., Singh, D., Kumar, R.: Generalized
thermoelastic waves in homogeneous isotropic thermoelastic plate. J. Acoust.
Soc. Am.108, 848-851 (2000).
[38] Chandrasekharaiah, D. S.: One dimensional wave
propagation in the linear theory of thermoelasticity without energy
dissipation. J. Therm. Stresses.19, 695-710 (1996).
[39] Sharma, J. N.: Numerical method for engineers and scientists,
Narosa Publishing House Pvt. Ltd. (Second edition), New Delhi (2007).
[40] Graff, K. F.: Wave motion in elastic solids. Dover
Publication INC. New York (1975).