Conference Proceeding

Author(s): Nayana B, Vandana C D, Jayashree V H, Sandeep K C

Email(s): kc.sandeep@jainuniversity.ac.in

Address: Nayana B1, Vandana C D2, Jayashree V H2, Sandeep K C2*
1Assistant professor, Dept. of Botany and Microbiology, School of Sciences, Jain (Deemed-to-be University), Bengaluru, Karnataka, India
2Assistant professor, Dept. of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be University), Bengaluru, Karnataka, India
*Corresponding Author

Published In:   Conference Proceeding, Proceeding of ICONS-2024

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI:




HTML paper not available.



REFERENCES:

1.       Agrawal, P., Kaur, G., Gupta, V., Agarwal, K., Pinjarkar, L., and Patil, S. (2025). AI Applications in Analyzing Gene Expression for Cancer Diagnosis: A Comprehensive Review. Genomics at the Nexus of AI, Computer Vision, and Machine Learning, 285-307.

2.       Ahmed, Z. (2022). Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. Progress in molecular biology and translational science, 190(1), 101-125.

3.       Al-Janabi, A. (2022). Has DeepMind’s AlphaFold Solved the Protein Folding Problem? BioTechniques, 72(3), 73–76. https://doi.org/10.2144/btn-2022-0007

4.       Al-Shahrour, F., Díaz-Uriarte, R., and Dopazo, J. (2005). Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics, 21(13), 2988-2993.

5.       Álvarez-Machancoses, Ó., DeAndres Galiana, E. J., Cernea, A., Fernández de la Viña, J., and Fernández-Martínez, J. L. (2020). On the role of artificial intelligence in genomics to enhance precision medicine. Pharmacogenomics and personalized medicine, 105-119.

6.       Antonov, A. V., Schmidt, E. E., Dietmann, S., Krestyaninova, M., and Hermjakob, H. (2010). R spider: a network-based analysis of gene lists by combining signaling and metabolic pathways from Reactome and KEGG databases. Nucleic acids research, 38(suppl_2), W78-W83.

7.       Antonov, A. V., Schmidt, E. E., Dietmann, S., Krestyaninova, M., and Hermjakob, H. (2010). R spider: a network-based analysis of gene lists by combining signaling and metabolic pathways from Reactome and KEGG databases. Nucleic Acids Res. 38, W78–W83.

8.       Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., ... and Yeh, L. S. L. (2004). UniProt: the universal protein knowledgebase. Nucleic acids research, 32(suppl_1), D115-D119.

9.       Azevedo, R., Jacquemin, C., Villain, N., Fenaille, F., Lamari, F., and Becher, F. (2022). Mass spectrometry for neurobiomarker discovery: The relevance of post-translational modifications. Cells, 11(8), 1279. https://doi.org/10.3390/cells11081279

10.     Bai, M., Deng, J., Dai, C., Pfeuffer, J., Sachsenberg, T., and Perez-Riverol, Y. (2023). LFQ-based peptide and protein intensity differential expression analysis. Journal of Proteome Research, 22(6), 1289-1301. https://doi.org/10.1021/acs.jproteome.3c00158

11.     Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., ... and Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature genetics, 29(4), 365-371.

12.     Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P., Holstege, F. C., Kim, I. F., Markowitz, V., Matese, J. C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371.

13.     Brenner, S., Noble, D., Sejnowski, T., Fields, R. D., Laughlin, S., Berridge, M., ... and Dolmetsch, R. E. (2001). Understanding complex systems: top-down, bottom-up or middle-out. In Novartis Foundation Symposium: Complexity in biological information processing (Vol. 239, pp. 150-159). Chichester, UK: Wiley.

14.     Cavener, D. R., and Ray, S. C. (1991). Eukaryotic start and stop translation sites. Nucleic acids research, 19(12), 3185-3192.

15.     Cavener, D. R., and Ray, S. C. (1991). Eukaryotic start and stop translation sites. Nucleic Acids Res. 19, 3185–3192.

16.     Chen, C., Wang, J., Pan, D., Wang, X., Xu, Y., Yan, J., Wang, L., Yang, X., Yang, M., and Liu, G. P. (2023). Applications of multi-omics analysis in human diseases. MedComm, 4(4), e315. https://doi.org/10.1002/mco2.315

17.     Chen, L., Li, Q., Nasif, K. F. A., Xie, Y., Deng, B., Niu, S., Pouriyeh, S., Dai, Z., Chen, J., and Xie, C. Y. (2024). AI-driven deep learning techniques in protein structure prediction. International Journal of Molecular Sciences, 25(15), 8426. https://doi.org/10.3390/ijms25158426

18.     Cheng, Y., Xu, S.-M., Santucci, K., Lindner, G., and Janitz, M. (2024). Machine learning and related approaches in transcriptomics. Biochemical and Biophysical Research Communications, 724, 150225. https://doi.org/10.1016/j.bbrc.2024.150225

19.     Dai, X., and Shen, L. (2022). Advances and trends in omics technology development. Frontiers in Medicine, 9, 911861.

20.     Dhudum, R., Ganeshpurkar, A., and Pawar, A. (2024). Revolutionizing drug discovery: A comprehensive review of AI applications. Drugs and Drug Candidates, 3(1), 148-171. https://doi.org/10.3390/ddc3010009

21.     Dunphy, K., Dowling, P., Bazou, D., and O’Gorman, P. (2021). Current methods of post-translational modification analysis and their applications in blood cancers. Cancers, 13(8), 1930. https://doi.org/10.3390/cancers13081930

22.     Enoma, D. O., Bishung, J., Abiodun, T., Ogunlana, O., and Osamor, V. C. (2022). Machine learning approaches to genome-wide association studies. Journal of King Saud University-Science, 34(4), 101847.

23.     Graveley B. R. (2001). Alternative splicing: increasing diversity in the proteomic world. Trends in genetics: TIG, 17(2), 100–107. https://doi.org/10.1016/s0168-9525(00)02176-4

24.     Guillermo, S., Elizabeth, G., and Victor, S. (2020). DeepMSPeptide: Peptide detectability prediction using deep learning. Bioinformatics, 36(4), 1279-1280. https://doi.org/10.1093/bioinformatics/btz708

25.     Guo, K., Wu, M., Soo, Z., Yang, Y., Zhang, Y., Zhang, Q., ... and Lu, J. (2023). Artificial intelligence-driven biomedical genomics. Knowledge-Based Systems, 110937.

26.     Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402(6761 Suppl), C47–C52. https://doi.org/10.1038/35011540

27.     Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., ... and Clamp, M. (2002). The Ensembl genome database project. Nucleic acids research, 30(1), 38-41.

28.     Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond, M., Huminiecki, L., Kasprzyk, A., Lehvaslaiho, H., Lijnzaad, P., Melsopp, C., Mongin, E., Pettett, R., Pocock, M., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A., Vastrik, I., and Clamp, M. (2002). The Ensembl genome database project. Nucleic Acids Res. 30, 38–41.

29.     Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: systems biology. Annual review of genomics and human genetics, 2(1), 343-372.

30.     Ivanova, A. A., Rees, J. C., Parks, B. A., Andrews, M., Gardner, M., Grigorutsa, E., Kuklenyik, Z., Pirkle, J. L., and Barr, J. R. (2022). Integrated quantitative targeted lipidomics and proteomics reveal unique fingerprints of multiple metabolic conditions. Biomolecules, 12(10), 1439. https://doi.org/10.3390/biom12101439

31.     Johannsen, C., Koehler, C. J., and Thiede, B. (2021). Comparison of LFQ and IPTL for protein identification and relative quantification. Molecules, 26(17), 5330. https://doi.org/10.3390/molecules26175330

32.     Joshi-Tope, G., Gillespie, M., Vastrik, I., D’eustachio, P., Schmidt, E., De Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., Lewis, S., Birney, E., and Stein, L. (2005). Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432.

33.     Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.

34.     Kaur P, Singh A, Chana I. Computational techniques and tools for omics data analysis: state-of-the-art, challenges, and future directions[J]. Archives of Computational Methods in Engineering, 2021, 28: 4595-4631.

35.     Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053

36.     Lee, M. (2023). Recent advances in deep learning for protein-protein interaction analysis: A comprehensive review. Molecules, 28(13), 5169. https://doi.org/10.3390/molecules28135169

37.     Mann, M., and Jensen, O. N. (2003). Proteomic analysis of post-translational modifications. Nature biotechnology, 21(3), 255-261.

38.     Mann, M., and Jensen, O. N. (2003). Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261.

39.     Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., and Ferrari, R. (2018). Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in bioinformatics, 19(2), 286–302. https://doi.org/10.1093/bib/bbw114

40.     Miettinen, T., Nieminen, A. I., Mäntyselkä, P., Kalso, E., and Lötsch, J. (2022). Machine learning and pathway analysis-based discovery of metabolomic markers relating to chronic pain phenotypes. International Journal of Molecular Sciences, 23(9), 5085.

41.     Nguyen, T. M., Kim, N., Kim, D. H., Le, H. L., Piran, M. J., Um, S. -J., and Kim, J. H. (2021). Deep learning for human disease detection, subtype classification, and treatment response prediction using epigenomic data. Biomedicines, 9(11), 1733. https://doi.org/10.3390/biomedicines9111733

42.     Orasch, O., Weber, N., Müller, M., Amanzadi, A., Gasbarri, C., and Trummer, C. (2022). Protein–protein interaction prediction for targeted protein degradation. International Journal of Molecular Sciences, 23(13), 7033. https://doi.org/10.3390/ijms23137033

43.     Orchard, S., and Hermjakob, H. (2008). The HUPO proteomics standards initiative—easing communication and minimizing data loss in a changing world. Briefings in bioinformatics, 9(2), 166-173.

44.     Orchard, S., Hermjakob, H., and Apweiler, R. (2003). The proteomics standards initiative. Proteomics 3, 1374–1376.

45.     Pakhrin, S. C., Shrestha, B., Adhikari, B., and KC, D. B. (2021). Deep learning-based advances in protein structure prediction. International Journal of Molecular Sciences, 22(11), 5553. https://doi.org/10.3390/ijms22115553

46.     Parmigiani, G., Garrett, E. S., Anbazhagan, R., and Gabrielson, E. (2002). A statistical framework for expression-based molecular classification in cancer. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64(4), 717-736.

47.     Parmigiani, G., Garrett, E. S., Anbazhaghan, R., and Gabrielson, E. (2002). A statistical framework for expression-based molecular classification in cancer. J. R. Stat. Soc. B Stat. Methodol. 64, 717–736.

48.     Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., ... and Aebersold, R. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nature biotechnology, 22(11), 1459-1466.

49.     Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R. H., Apweiler, R., Cheung, K., Costello, C. E., Hermjakob, H., Huang, S., Julian, R. K., Kapp, E., Mccomb, M. E., Oliver, S. G., Omenn, G., Paton, N. W., Simpson, R., Smith, R., Taylor, C. F., Zhu, W., and Aebersold, R. (2004). A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466.

50.     Quan, C., Luo, Z., and Wang, S. (2020). A hybrid deep learning model for protein–protein interactions extraction from biomedical literature. Applied Sciences, 10(8), 2690. https://doi.org/10.3390/app10082690

51.     Rukhsar, L., Bangyal, W. H., Ali Khan, M. S., Ag Ibrahim, A. A., Nisar, K., and Rawat, D. B. (2022). Analyzing RNA-seq gene expression data using deep learning approaches for cancer classification. Applied Sciences, 12(4), 1850. https://doi.org/10.3390/app12041850

52.     Sanches, P. H. G., de Melo, N. C., Porcari, A. M., and de Carvalho, L. M. (2024). Integrating molecular perspectives: Strategies for comprehensive multi-omics integrative data analysis and machine learning applications in transcriptomics, proteomics, and metabolomics. Biology, 13(11), 848. https://doi.org/10.3390/biology13110848

53.     Sekaran, K., and Zayed, H. (2024). Identification of novel hypertension biomarkers using explainable AI and metabolomics. Metabolomics, 20(6), 124.

54.     Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., et al. (2024). Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328

55.     Sethi, M. K., and Fanayan, S. (2015). Mass spectrometry-based N-glycomics of colorectal cancer. International Journal of Molecular Sciences, 16(12), 29278-29304. https://doi.org/10.3390/ijms161226165

56.     Sharpf, R. B., Tjelmeland, H., Parmigiani, G., and Nobel, A. B. (2009). A Bayesian model for cross-study differential gene expression. J. Am. Stat. Assoc. 104, 1295–1310.

57.     Soleymani, F., Paquet, E., Viktor, H., Michalowski, W., and Spinello, D. (2022). Protein-protein interaction prediction with deep learning: A comprehensive review. Computational and structural biotechnology journal, 20, 5316–5341. https://doi.org/10.1016/j.csbj.2022.08.070

58.     Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz, S., ... and Brazma, A. (2002). Design and implementation of microarray gene expression markup language (MAGE-ML). Genome biology, 3, 1-9.

59.     Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz, S., Bernhart, D., Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks, W. L., Goncalves, J., Markel, S., Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hubley, R., Deutsch, E., Senger, M., Aronow, B. J., Robinson, A., Bassett, D., Stoeckert, C. J. Jr., and Brazma, A. (2002). Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3, RESEARCH0046.

60.     Theodorakis, N., Feretzakis, G., Tzelves, L., Paxinou, E., Hitas, C., Vamvakou, G., Verykios, V. S., and Nikolaou, M. (2024). Integrating machine learning with multi-omics technologies in geroscience: Towards personalized medicine. Journal of Personalized Medicine, 14(9), 931. https://doi.org/10.3390/jpm14090931

61.     Vadapalli, S., Abdelhalim, H., Zeeshan, S., and Ahmed, Z. (2022). Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Briefings in bioinformatics, 23(5), bbac191.

62.     Visan, A. I., and Negut, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel, Switzerland), 14(2), 233. https://doi.org/10.3390/life14020233

63.     Xiao, J. F., Zhou, B., and Ressom, H. W. (2012). Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends in Analytical Chemistry, 32, 1-14.

64.     Yin, J., Lei, J., Yu, J., Cui, W., Satz, A. L., Zhou, Y., Feng, H., Deng, J., Su, W., and Kuai, L. (2022). Assessment of AI-based protein structure prediction for the NLRP3 target. Molecules, 27(18), 5797. https://doi.org/10.3390/molecules27185797

65.     Zainab, N., Seong Beom, A., Mark S., B., Shoba, R., and Abidali, M. (2021). Mass spectrometry–based protein identification in proteomics—a review. Briefings in Bioinformatics, 22(2), 1620–1638. https://doi.org/10.1093/bib/bbz163

 



Related Images:



Author/Editor Information

Dr. Vani. R

Professor

Dr. Apurva Kumar R. Joshi

Assistant Professor and Program Head