HTML paper not available.
7. REFERENCES:
1. Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy conversion and management, 51(7), 1412-1421.
2. Adeleke, A. A., Petrus, N., Ayuba, S., Yahya, A. M., Ikubanni, P. P., Okafor, I. S., and Adesibikan, A. A. (2023). Nigerian Biomass for Bioenergy Applications: A Review on the Potential and Challenges. Journal of Renewable Materials, 11(12).
3. Deng, W., Feng, Y., Fu, J., Guo, H., Guo, Y., Han, B., ... and Zhou, H. (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment, 8(1), 10-114.
4. Okolie, J. A., Nanda, S., Dalai, A. K., and Kozinski, J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, 12, 2145-2169.
5. Mota, C. J., De Lima, A. L., Fernandes, D. R., and Pinto, B. P. (2022). Levulinic Acid: A Sustainable Platform Chemical for Value-added Products. John Wiley and Sons.
6. Di Bucchianico, D. D. M., Wang, Y., Buvat, J. C., Pan, Y., Moreno, V. C., and Leveneur, S. (2022). Production of levulinic acid and alkyl levulinates: a process insight. Green Chemistry, 24(2), 614-646.
7. Badgujar, K. C., Wilson, L. D., and Bhanage, B. M. (2019). Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 102, 266-284.
8. Badgujar, K. C., Badgujar, V. C., and Bhanage, B. M. (2023). Synthesis of alkyl levulinate as fuel blending agent by catalytic valorization of carbohydrates via alcoholysis: recent advances and challenges. Catalysis Today, 408, 9-21.
9. Yan, L., Yao, Q., and Fu, Y. (2017). Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chemistry, 19(23), 5527-5547.
10. Badgujar, K. C., Badgujar, V. C., and Bhanage, B. M. (2022). Lipase as a green and sustainable material for production of levulinate compounds: state of the art. Materials Science for Energy Technologies, 5, 232-242.
11. Ahmad, K. A., Siddiqui, M. H., Pant, K. K., Nigam, K. D. P., Shetti, N. P., Aminabhavi, T. M., and Ahmad, E. (2022). A critical review on suitability and catalytic production of butyl levulinate as a blending molecule for green diesel. Chemical Engineering Journal, 447, 137550.
12. Wu, P., Miao, C., Zhuang, X., Li, W., Tan, X., and Yang, T. (2023). Physicochemical characterization of levulinate esters with different alkyl chain lengths blended with fuel. Energy Science and Engineering, 11(1), 164-177.
13. Jyoti, Alisha, Singh, M., Negi, P., Dwivedi, P., and Mishra, B. B. (2024). Carbohydrate Derived Value-added Products from Lignocelluloses. Current Organic Chemistry.
14. Bellè, A. (2020). Multiphase catalysis for the valorization of biobased compounds.
15. Gautam, P., Barman, S., and Ali, A. (2022). A comparative study on the performance of acid catalysts in the synthesis of levulinate ester using biomass‐derived levulinic acid: a review. Biofuels, Bioproducts and Biorefining, 16(4), 1095-1115.
16. Sajid, M., Farooq, U., Bary, G., Azim, M. M., and Zhao, X. (2021). Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chemistry, 23(23), 9198-9238.
17. Hessel, V., Tran, N. N., Asrami, M. R., Tran, Q. D., Long, N. V. D., Escribà-Gelonch, M., ... and Sundmacher, K. (2022). Sustainability of green solvents–review and perspective. Green Chemistry, 24(2), 410-437.
18. Feng, J., Jiang, J., Hse, C. Y., Yang, Z., Wang, K., Ye, J., and Xu, J. (2018). Selective catalytic conversion of waste lignocellulosic biomass for renewable value-added chemicals via directional microwave-assisted liquefaction. Sustainable Energy and Fuels, 2(5), 1035-1047.
19. Manjunatha, C., Ashoka, S., and Krishna, R. H. (2021). Microwave-assisted green synthesis of inorganic nanomaterials. In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 1-39). Elsevier.
20. Wang, J., Wu, W., Kondo, H., Fan, T., and Zhou, H. (2022). Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology, 33(34), 342002.
21. Winterton, N. (2021). The green solvent: A critical perspective. Clean technologies and environmental policy, 23(9), 2499-2522.
22. López-Porfiri, P., Gorgojo, P., and Gonzalez-Miquel, M. (2020). Green solvent selection guide for biobased organic acid recovery. ACS Sustainable Chemistry and Engineering, 8(24), 8958-8969.
23. Esmi, F., Borugadda, V. B., and Dalai, A. K. (2022). Heteropoly acids as supported solid acid catalysts for sustainable biodiesel production using vegetable oils: A review. Catalysis Today, 404, 19-34.
24. Kalita, P., Basumatary, S., Nath, B., and Baruah, M. B. (2023). Agricultural waste: Sustainable valuable products. In Advanced Materials from Recycled Waste (pp. 155-178). Elsevier.
25. Blasi, A., Verardi, A., Lopresto, C. G., Siciliano, S., and Sangiorgio, P. (2023). Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling, 8(4), 61.
26. Rasheed, H. A., Adeleke, A. A., Nzerem, P., Olosho, A. I., Ogedengbe, T. S., and Jesuloluwa, S. (2024). Isolation, characterization and response surface method optimization of cellulose from hybridized agricultural wastes. Scientific Reports, 14(1), 14310.
27. D'amato, D., and Korhonen, J. (2021). Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecological Economics, 188, 107143.
28. Liu, W., Yin, P., Liu, X., Chen, W., Chen, H., Liu, C., ... and Xu, Q. (2013). Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production. Energy Conversion and Management, 76, 1009-1014.
29. Appaturi, J. N., Andas, J., Ma, Y. K., Phoon, B. L., Batagarawa, S. M., Khoerunnisa, F., and Ng, E. P. (2022). Recent advances in heterogeneous catalysts for the synthesis of alkyl levulinate biofuel additives from renewable levulinic acid: A comprehensive review. Fuel, 323, 124362.
30. Al-Amsyar, S. M. (2022). Sulfonated-silica/carbon composites from rice husk as heterogeneous catalysts in fructose conversion: The effect of controlling carbonization temperature of rice husk on its physicochemical properties and catalytic activities. Microporous and Mesoporous Materials, 336, 111896.
31. Mirle, R. M., Veerabhadraswamy, M., and Maruthi, N. (2023). Catalytic conversion of defatted rice bran into value added chemicals using copper ferrite: A sustainable approach. Journal of the Indian Chemical Society, 100(9), 101072.
32. Wang, Y., Zhao, D., Triantafyllidis, K. S., Ouyang, W., Luque, R., and Len, C. (2020). Microwave-assisted catalytic upgrading of bio-based furfuryl alcohol to alkyl levulinate over commercial non-metal activated carbon. Molecular Catalysis, 480, 110630.
33. Krishnasamy, K., Asmadi, M., Zainol, M. M., Amin, N. A. S., Zakaria, Z. Y., and Abdullah, S. B. (2024). Dual-Acidity Catalysts for Alkyl Levulinate Synthesis from Biomass Carbohydrates: A Review. BioEnergy Research, 17(2), 790-815.
34. Yadav, G., Yadav, N., and Ahmaruzzaman, M. (2023). Microwave-assisted sustainable synthesis of biodiesel on Oryza sativa catalyst derived from agricultural waste by esterification reaction. Chemical Engineering and Processing-Process Intensification, 187, 109327.
35. New, E. K., Tnah, S. K., Voon, K. S., Yong, K. J., Procentese, A., Shak, K. P. Y., ... and Wu, T. Y. (2022). The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. Journal of environmental management, 307, 114385.