Conference Proceeding

Author(s): Rahul D Chaudhari, Rakesh S Deore

Email(s): merahulchaudhari.gmail.com

Address: Rahul D Chaudhari1, Dr. Rakesh S Deore2
1 Department of Computer Science S.S.V.P.S. Science College, Dhule, KBCNMU, Jalgaon, Maharashtra, India.
2 Department of Computer Science S.S.V.P.S. Science College, Dhule, KBCNMU, Jalgaon, Maharashtra, India.
*Corresponding Author

Published In:   Conference Proceeding, Proceeding of ICONS-2024

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI:




HTML paper not available.



REFERENCES:

1.      Dix A, Finlay J, Abowd GD, Beale R (2003) Human-computer interaction (3rd ed). Harlow, England. New York: Pearson/Prentice-Hall.

2.      Erat, K., Şahin, E.B., Doğan, F. et al. Emotion recognition with EEG-based brain-computer interfaces: a systematic literature review. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-18259-z.

3.      Vasiljevic GAM, de Miranda LC (2020) Brain–computer interface games based on consumer-grade EEG Devices: A systematic literature review. Int J Human-Computer Interact 36:105–142.

4.      Ahn M, Lee M, Choi J, Jun S (2014) A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users. Sensors 14:14601–14633.

5.      Folgieri, R, Lucchiari, C, Granato, M, Grechi, D (2014) Brain, Technology and Creativity. Brain Art: A BCI-Based Entertainment Tool to Enact Creativity and Create Drawing from Cerebral Rhythms. in Digital Da Vinci (ed. Lee, N.) 65–97 (Springer New York, 2014).

6.      Nijholt A, Erp, J, van Heylen DKJ (2008) BrainGain: BCI for HCI and Games. In: Proceedings AISB Symposium Brain Computer Interfaces and Human computer Interaction: A Convergence of Ideas, The Society for the Study of Artificial Intelligence and Simulation of Behaviour, Aberdeen, pp 32–35.

7.      Serrhini, M, Dargham, A (2017) Toward Incorporating Bio-signals in Online Education Case of Assessing Student Attention with BCI. in Europe and MENA Cooperation Advances in Information and Communication Technologies (eds. Rocha, Á., Serrhini, M. and Felgueiras, C.) vol. 520 135– 146, Springer International Publishing.

8.      Birbaumer N (2006) Breaking the silence: Brain? computer interfaces (BCI) for communication and motor control. Psychophysiology 43:517–532.

9.      Yadav, H., Maini, S. Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Multimed Tools Appl 82, 47003– 47047 (2023). https://doi.org/10.1007/s11042-023-15653-x.

10.   Lindsay HF (2003) "Hans berger (1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol Neurosurg Psychiatry 74(1):9–9.

11.   Vidal JJ (1973) Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering 2(1):157–180.

12.   Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiology 70(6):510–523.

13.   Hoffmann U, Vesin J M, Ebrahimi T, Diserens K (2008) An efficient P300- based brain–computer interface for disabled subjects. J Neurosci Methods 167(1):115–125.

14.   Donoghue JP (2002) Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci 5(11):1085–1088.

15.   Ashok S (2017) High-level hands-free control of wheelchair–a review. J Med Eng Technol 41(1):46–64.

16.   Holz EM et al (2013) Brain–computer interface controlled gaming: Evaluation of usability by severely motor restricted end-users. Artif Intell Med 59(2):111– 120.

17.   Amer, Nisreen and Brahim Belhaouari, Samir. (2023). EEG Signal Processing for Medical Diagnosis, Healthcare, and Monitoring: A Comprehensive Review. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3341419.

18.   Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y (2021) A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J Neural Eng 18(3):031002.

19.   Martis RJ, Tan JH, Chua CK, Loon TC, Yeo SWJ, Tong L (2015) Epileptic EEG classification using nonlinear parameters on different frequency bands. J Mech Med Biol 15(03):1550040.

20.   de Munck JC, Gonçalves SI, Mammoliti R, Heethaar RM, Da Silva FL (2009) Interactions between different EEG frequency bands and their effect on alpha– fMRI correlations. Neuroimage 47(1):69–76.

21.   Zheng WL, Lu BL (2015) Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev 7(3):162–175.

22.   D. Nath, M. B. Uddin, M. M. Rana, P. C. Biswas, S. Wahed and M. Ahmad, "Number recognition using  salient features of beta rhythmic EEG signal," 2015 International Conference on Electrical Engineering  and Information Communication Technology (ICEEICT), Savar, Bangladesh, 2015, pp. 1-6, doi: 10.1109/ICEEICT.2015.7307364.

23.   D. Nath and M. Ahmad, "Toward number recognition system: A nonstationary signal analyzing approach through SVM algorithm," 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT), Khulna, Bangladesh, 2015.

24.   Rao Shashibala , Gawali Bharti , Rokade Pramod and Deore Rakesh (2012). Number recognition system using electroencephalogram (EEG) signals. Advances in Computational Research ISSN: 0975-3273,2012.

25.   https://dxganta.medium.com/decoding-thoughts-with-deep-learning-eeg- based-digit-detection-using-cnns      cdf7eee20722#:~:text=Digit%20detection %20using%20EEG%20data,recorded%20with%20a%20Muse%20headset.

26.   Mahapatra NC, Bhuyan P. EEG-based classification of imagined digits using a recurrent neural network. J Neural Eng. 2023 Apr 28;20(2). doi: 10.1088/1741-2552/acc976. PMID: 37001511.

27.   Torres EP, Torres EA, Hernández-Álvarez M, Yoo SG (2020) (2020) EEG- Based BCI Emotion Recognition: A Survey. Sensors 20:5083.

28.   Gu X et al (2021) EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans Comput Biol Bioinform 18:1645–1666.

29.   Al-Nafjan, AN, Hosny, M, Al-Wabil, A, Al-Ohali, Y (2017) Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network. https://doi.org/10.14569/IJACSA.2017.080955.

 

 

 

 

 



Related Images:



Author/Editor Information

Dr. Vani. R

Professor

Dr. Apurva Kumar R. Joshi

Assistant Professor and Program Head