REFERENCES:
1. Dix A, Finlay J, Abowd GD, Beale R
(2003) Human-computer interaction (3rd ed). Harlow, England.
New York: Pearson/Prentice-Hall.
2. Erat, K., Şahin, E.B., Doğan, F. et al.
Emotion recognition with EEG-based brain-computer interfaces: a
systematic literature review. Multimed
Tools Appl (2024). https://doi.org/10.1007/s11042-024-18259-z.
3. Vasiljevic GAM, de Miranda LC (2020)
Brain–computer interface games based on consumer-grade EEG Devices: A systematic
literature review. Int J Human-Computer Interact 36:105–142.
4. Ahn
M, Lee M, Choi J, Jun S (2014) A Review of Brain-Computer Interface Games and an Opinion Survey
from Researchers, Developers and Users. Sensors 14:14601–14633.
5. Folgieri, R, Lucchiari, C, Granato,
M, Grechi, D (2014) Brain, Technology and Creativity. Brain Art: A BCI-Based Entertainment Tool to Enact Creativity
and Create Drawing
from Cerebral Rhythms.
in Digital Da Vinci (ed. Lee, N.) 65–97 (Springer New York, 2014).
6. Nijholt A, Erp, J, van Heylen
DKJ (2008) BrainGain: BCI for HCI and Games. In: Proceedings AISB Symposium
Brain Computer Interfaces and Human computer
Interaction: A Convergence of Ideas, The Society for the
Study of Artificial Intelligence and Simulation of Behaviour, Aberdeen, pp 32–35.
7. Serrhini, M, Dargham, A (2017) Toward Incorporating Bio-signals in Online
Education Case of Assessing Student Attention with BCI. in Europe and MENA
Cooperation Advances in Information and Communication Technologies (eds. Rocha,
Á., Serrhini, M. and Felgueiras, C.) vol. 520 135– 146, Springer International
Publishing.
8. Birbaumer N (2006) Breaking the
silence: Brain? computer interfaces (BCI) for communication and motor control.
Psychophysiology 43:517–532.
9. Yadav, H., Maini, S.
Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities. Multimed
Tools Appl 82, 47003–
47047 (2023). https://doi.org/10.1007/s11042-023-15653-x.
10. Lindsay HF (2003) "Hans berger
(1873–1941), Richard Caton (1842–1926), and electroencephalography. J Neurol
Neurosurg Psychiatry 74(1):9–9.
11. Vidal JJ (1973) Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering
2(1):157–180.
12. Farwell LA, Donchin E (1988) Talking
off the top of your head: toward a mental prosthesis utilizing event-related
brain potentials. Electroencephalogr Clin Neurophysiology 70(6):510–523.
13. Hoffmann U, Vesin J M, Ebrahimi T,
Diserens K (2008) An efficient P300-
based brain–computer interface for disabled subjects. J Neurosci Methods 167(1):115–125.
14. Donoghue JP (2002) Connecting cortex to machines:
recent advances in brain
interfaces. Nat Neurosci 5(11):1085–1088.
15. Ashok S (2017) High-level hands-free control of wheelchair–a review.
J Med Eng Technol
41(1):46–64.
16. Holz EM et al (2013) Brain–computer interface controlled gaming:
Evaluation of usability by severely motor restricted end-users. Artif Intell Med 59(2):111–
120.
17. Amer, Nisreen and Brahim Belhaouari,
Samir. (2023). EEG Signal Processing for Medical Diagnosis, Healthcare, and
Monitoring: A Comprehensive Review. IEEE Access.
PP. 1-1. 10.1109/ACCESS.2023.3341419.
18. Zhang X, Yao L, Wang X, Monaghan J, Mcalpine D, Zhang Y (2021) A survey on deep learning-based non-invasive
brain signals: recent advances and new frontiers. J Neural Eng 18(3):031002.
19. Martis RJ, Tan
JH, Chua CK, Loon TC, Yeo SWJ, Tong L (2015) Epileptic EEG classification using
nonlinear parameters on different frequency bands. J Mech Med Biol
15(03):1550040.
20. de Munck JC,
Gonçalves SI, Mammoliti R, Heethaar RM, Da Silva FL (2009) Interactions between
different EEG frequency bands and their effect on alpha– fMRI correlations.
Neuroimage 47(1):69–76.
21. Zheng WL, Lu BL
(2015) Investigating critical frequency bands and channels for EEG-based
emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev
7(3):162–175.
22. D. Nath, M. B.
Uddin, M. M. Rana, P. C. Biswas, S. Wahed and M. Ahmad, "Number
recognition using salient features of
beta rhythmic EEG signal," 2015 International Conference on Electrical
Engineering and Information
Communication Technology (ICEEICT), Savar, Bangladesh, 2015, pp. 1-6, doi:
10.1109/ICEEICT.2015.7307364.
23. D. Nath and M.
Ahmad, "Toward number recognition system: A nonstationary signal analyzing
approach through SVM algorithm," 2015 2nd International Conference on
Electrical Information and Communication Technologies (EICT), Khulna,
Bangladesh, 2015.
24. Rao Shashibala
, Gawali Bharti , Rokade Pramod and Deore Rakesh (2012). Number recognition
system using electroencephalogram (EEG) signals. Advances in Computational
Research ISSN: 0975-3273,2012.
25. https://dxganta.medium.com/decoding-thoughts-with-deep-learning-eeg- based-digit-detection-using-cnns cdf7eee20722#:~:text=Digit%20detection %20using%20EEG%20data,recorded%20with%20a%20Muse%20headset.
26. Mahapatra NC,
Bhuyan P. EEG-based classification of imagined digits using a recurrent neural
network. J Neural Eng. 2023 Apr 28;20(2). doi: 10.1088/1741-2552/acc976. PMID:
37001511.
27. Torres EP,
Torres EA, Hernández-Álvarez M, Yoo SG (2020) (2020) EEG- Based BCI Emotion
Recognition: A Survey. Sensors 20:5083.
28. Gu X et al
(2021) EEG-based brain-computer interfaces (BCIs): A survey of recent studies
on signal sensing technologies and computational intelligence approaches and
their applications. IEEE/ACM Trans Comput Biol Bioinform 18:1645–1666.
29. Al-Nafjan, AN,
Hosny, M, Al-Wabil, A, Al-Ohali, Y (2017) Classification of Human Emotions from
Electroencephalogram (EEG) Signal using Deep Neural Network. https://doi.org/10.14569/IJACSA.2017.080955.