Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Poonam Sharma

Email(s): poonamnit82@gmail.com

Address: Poonam Sharma
Department of Mathematics, NSCBM Government College, Hamirpur, 177005, Himachal Pradesh, India.
*Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
In this paper the effect of magnetic field dependent viscosity on soret-driven Ferrothermohaline convection in an anisotropic Darcy porous medium using a local thermal non-equilibrium model is investigated theoretically. Linear stability analysis is carried out for ferrofluid layer contained between two stress-free boundaries using normal mode method. The effect of various parameters such as MFD viscosity, non-buoyancy magnetization, anisotropy of permeability of porous medium, soret parameter, heat transfer coefficientis studied and results are depicted graphically.


Cite this article:
Poonam Sharma. The Onset of Soret-Driven Ferrothermohaline Convection in An Anisotropic Darcy Porous Medium Using a Local Thermal Nonequilibrium Model: Effect of MFD Viscosity. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:67-72.


REFERENCES:

1.              N. Banu and D. A. S. Rees., 2002, Int. J. Heat and Mass Transf., 45:2221–2228.

2.              B. A. Finlayson., 1970,International Journal of Fluid Mechanics, 40:753.

3.              R. Hemalatha, R. Sekar, and G. Vaidyanathan., 2011,  International Journal of Applied Mechanics and Engineering, 16(4):1021–1036.

4.              R. Hemalatha and N. Sivapraba.2012, Indian Journal of Pure and Applied Physics, 50:907–914.

5.              D. Murugan and R. Sekar. 2021, Int. Journal of Applied Mechanics and Engineering, 26(1):156–177.

6.              D. A. Nield and A. Bejan.   Convection in Porous Media.  Springer, New York, 4 edition, 2013.

7.              M. Ravisha, I. S. Shivakumara, and A. L. Mamatha., 2017,  Defect and Diffusion Forum, 378:137–156.

8.              D. A. S. Rees and I. Pop.   Local thermal nonequilibrium in porous Medium convection, volume 3.  Elsevier, Oxford, 2005.

9.              R. E. Rosenweig.   Ferrohydrodynamics.  Cambridge University Press, Cambridge, 1985.

10.           R. Sekar, D. Murugan, and K. Raju., 2016, Int. J. Appl. Math. Electronics and Computers, 4(2):58–64.

11.           R. Sekar and K. Raju., 2014, Global Journal of Mathematical Analysis, 3(1):37–48.

12.           R. Sekar, G. Vaidyanathan, R. Hemalatha, and S. Senthilnathan., 2006, Journal of Magnetism and Magnetic Materials, 302:20–28.

I.               S. Shivakumara, J. Lee, M. Ravisha, and R. G. Reddy., 2012, Mechanica, 47:1359–1378.

13.           Sunil and A. Mahajan., 2008, Proc. R. Soc. London, Ser. A, 464:83–98.

14.           Sunil, P. Sharma, and A. Mahajan., 2010, Journal of Geophysics and Engineering, 7:417–430.

15.           G. Vaidyanathan, R. Sekar, R. Hemalatha, Vasanthakumari, and S. Senthilnathan., 2005, Journal of Magnetism and Magnetic Materials, 288:460–469.

16.           G. Vaidyanathan, R. Sekar, and A. Ramanathan., 2002, Indian Journal of Chemical Technology, 9:446–449.





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA