Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Anu Sharma, Neeti Goel

Email(s): dranusharma79@gmail.com , neetigoel@andc.du.ac.in

Address: Anu Sharma1, Neeti Goel2 1Department of Mathematics, Rajdhani College, University of Delhi, Raja Garden, Ring Road, New Delhi, 110015, India. 2Department of Mathematics, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalka Ji, New Delhi, 110019, India. *Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
In the present work, we have investigated theoretically the effect of magnetic field dependent viscosity and coriolis force on soret driven ferrothermohaline convection in an anisotropic Darcy porous medium with local thermal non-equilibrium (LTNE) model. The effect of anisotropy parameter of permeability of porous medium, soret parameter, Taylor number, MFD viscosity, salinity Rayleigh number, heat transfer coefficient, porosity modified conductivity ratio are examined using linear stability theory and results are shown graphically.


Cite this article:
Anu Sharma, Neeti Goel. Effect of MFD Viscosity and Coriolis Force on Soret-Driven Ferrothermohaline Convection in An Anisotropic Darcy Porous Medium with LTNE: Linear Stability Analysis. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:85-92.


REFERENCES:

1.                   S. Chandrasekhar. Hydrodynamics and hydromagnetic stability. Physics Today, 15:3, 1961.

2.                   B. A. Finlayson.  Convective instability of ferromagnetic fluids.   International Journal of Fluid Mechanics, 40:753, 1970.

3.                   R. Hemalatha, R. Sekar, and G. Vaidyanathan.  Effect of rotation on a soret-driven thermahaline convection in a dusty ferrofluid saturating a porous medium.   International Journal of Applied Mechanics and Engineering, 16(4):1021–1036, 2011.

4.                   R. Hemalatha.  Study of magnetic field dependent viscosity on a soret driven ferrothermohaline convection in a rotating porous medium.   Int. Journal of Applied Mechanics and Engineering, 19:61–77, 2014.

5.                   D. T. J. Hurle and E. J. Jakeman.  Soret driven thermosolutal convection.   Journal of Fluid Mechanics, 47:667–687, 1971.

6.                   D. P. Lalas and S. Carmi.  Thermoconvective stability of ferrofluids.   The Physics of Fluids, 14:436, 1971.

7.                   J. Lee, I. S. Shivakumara, and M. Ravisha.  Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium.   Trans. Porous Med., 86:103–124, 2011.

8.                   D. A. Nield and A. Bejan.   Convection in Porous Media.  Springer, New York, 4 edition, 2013.

9.                   D. A. S. Rees and I. Pop.   Local thermal nonequilibrium in porous Medium convection, volume 3.  Elsevier, Oxford, 2005.

10.                R. E. Rosenweig.   Ferrohydrodynamics.  Cambridge University Press, Cambridge, 1985.

11.                R. Sekar and D. Murugan.  A linear analytical study of coriolis force on soret driven ferrothermohaline convection in a darcy anisotropic porous medium with mfd viscosity.   Journal of Theoretical and Applied Mechanics, 49:299–326, 2019.

12.                R. Sekar and K. Raju.  Stability analysis of soret effect on thermohaline convection in dusty ferrofluid saturating a darcy porous medium.   Global Journal of Mathematical Analysis, 3(1):37–48, 2014.

13.                R. Sekar, G. Vaidyanathan, R. Hemalatha, and S. Senthilnathan.  Effect of sparse distribution pores in soret-driven ferrothermohaline convection.   Journal of Magnetism and Magnetic Materials, 302:20–28, 2006.

14.                S. Shivakumara, J. Lee, M. Ravisha, and R. G. Reddy.  The effects of local thermal nonequilibrium and mfd viscosity on the onset of brinkman ferroconvection.   Mechanica, 47:1359–1378, 2012.

15.                P. G. Siddheshwar.  Convective instability of ferromagnetic fluids bounded by fluid-permeable, magnetic boundaries.   Journal of Magnetism and Magnetic Materials, 149:148–150, 1995.

16.                Sunil and A. Mahajan.  A nonlinear stability analysis for magnetized ferrofluid heated from below.   Proc. R. Soc. London, Ser. A, 464:83–98, 2008.

17.                Sunil, P. Sharma, and A. Mahajan.  Onset of darcy-brinkman double-diffusive ferroconvection in a rotating porous layer using a thermal non-equilibrium model: A nonlinear stability analysis. Transp Porous Medium, 88:421–439, 2011.

18.                G. Vaidyanathan, A. Ramanathan and S. Maruthamanikandan  Effect of magnetic field dependent viscosity  on Ferroconvection in sparsely distributed porous medium. Indian Journal of Pure and Applied Physics, 40:166–171, 2002a.

19.                G. Vaidyanathan, R. Sekar, and A. Ramanathan.  Effect of magnetic field dependent viscosity  on Ferroconvection in rotating medium. Indian Journal of Pure and Applied Physics, 40:159–165, 2002b.

20.                G. Vaidyanathan, R. Sekar, and A. Ramanathan.  Ferroconvection in an anisotropic densely packed porous medium.   Indian Journal of Chemical Technology, 9:446–449, 2002c.

21.                G. Vaidyanathan, R. Sekar, R. Hemalatha, Vasanthakumari, and S. Senthilnathan.  Soret-driven ferro thermohaline convection.   Journal of Magnetism and Magnetic Materials, 288:460–469, 2005.





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA