Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Chitresh Kumari, Jitender Kumar, Harjinder Singh, Jyoti Prakash

Email(s): chitreshsharma9098@gmail.com

Address: Chitresh Kumari*, Jitender Kumar, Harjinder Singh, Jyoti Prakash
Department of Mathematics & Statistics, Himachal Pradesh University, Shimla-171005.
*Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
In the present paper, the multicomponent convection problem has been studied by considering variable viscosity. A sufficient condition has been derived for the validity of the occurrence of stationary convection. Further the results derived herein are uniformly valid for all combinations of the bounding surfaces.


Cite this article:
Chitresh Kumari, Jitender Kumar, Harjinder Singh, Jyoti Prakash. On exchange Principle in Multicomponent Convection with Viscosity Variations. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:93-97.


REFERENCES:

1.              Banerjee, M.B., Gupta, J.R. and Shandil, R.G. (1977): Generalized thermal convection with viscosity variations, J. Math.Anal. Appl. 167(1), 66-73.

2.              Chandrasekhar, S. (1981): “Hydrodynamic and Hydromagnetic Stability”, Oxford university Press, dover publication, Inc., New York.

3.              Griffiths, R.W. (1979): The influence of a third diffusive component upon the onset of convection, journal of fluid mechanics, 92, 659-670.

4.              Gupta, J.R., Sood, S.K. and Bhardwaj, U.D. (1986): On the characterization of non-oscillatory motions in a rotatory hydromagnetic thermohaline convection, Ind. J. Pure appl. Math., 17(1), 100-107.

5.              Herron, I., (2000): On the principle of exchange of stabilities in Rayleigh-Benard convection, SIAM J. Appl. Math., 61(4), 1362-1368.

6.              Pearlstein, A. J., Harris, R.M., Terrones, G. (1989): The onset of convective instability in a triply diffusive fluid layer, J. Fluid Mech., 202, 443-465.

7.              Prakash. J., Kumar, R., Kumari, K., (2015a): A characterization theorem in triply diffusive convection with viscosity variations, Raj. Acad. Phys. Sci., 14 (3&4),249-258.

8.              Prakash. J., Kumar, R., Kumari, K., (2015b): Linear triply diffusive convection with viscosity variations, Int. J. Phys. and Math. Sciences, 5(1), 186-196.

9.              Prakash.J and Manan, S. (2016): On rotatory hydromagnetic multicomponent convection, Int. J. Appl. Sci. Eng. Res., 5(6), 405-420.

10.           Rionero, S. (2010): Long time behaviour of multicomponent fluid mixtures in porous media, Int. J. Eng. Sc.,48, 1519-1533.

11.           Rionero, S. (2013): Multicomponent diffusive-convective fluid motions in porous layers: Ultimately boundedness, absence of subcritical instabilities, global non-linear stability for any number of salts, Phys. Fluids, 25, 054104(1-23).

12.           Ryzhkov, I.I. and Shevtsova, V.M. (2007): On thermal diffusion and convection in multicomponent mixtures with application to the thermogravitational column. Phys. Fluids, 19(2), 027101(1-17).

13.           Ryzhkov, I.I. and Shevtsova, V.M. (2009): Long wave instability of a multicomponent fluid layer with the soret effect. Phys. Fluids, 21(1), 014102(1-14).

14.           Schultz, M.H. (1973): “Spine Analysis”, Prentice-Hall Englewood cliffs NJ.

15.           Stengel, K.C., Oliver, D.S. and Booker, J.R. (1982): Onset of convection in variable viscosity fluid, J. Fluid Mech., 120, 411-431.

16.           Terrones, G. (1993): Cross-diffusion effects on the stability criteria in a triply diffusive system, Phys, Fluids A, 5, 2172-2182.

17.           Terrones, G., and Pearlstein, A.J., (1989): The onset of a convection in a multicomponent fluid layer, Phys, Fluids A, 1(5), 845-853.

18.           Tracey, J. (1996): Multi-component convection-diffusion in a porous medium, Contum. Mech. Thermodyn., 8(6), 361-381.

19.           Turner, J.S., (1985): Multicomponent convection, Annu. Rev. Fluid Mech., 17, 11-44.

 

 

 





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA