Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Jitender Kumar, Chitresh Kumari, Jyoti Prakash

Email(s): Email ID Not Available

Address: Jitender Kumar*, Chitresh Kumari, Jyoti Prakash Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla-171005, India. *Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
It is proved analytically that the complex growth rate p=p_r+ip_i (p_r and p_i are respectively the real and imaginary parts of p) of an arbitrary oscillatory motion of growing amplitude in multicomponent convection with variable viscosity lies inside a semi-circle in right half of the p_r p_i-plane whose center is origin and radius =√((R_1+R_2+⋯+R_(n-1) )σ), where R_i (i=1,2,…,n-1) are the concentration Rayleigh numbers and σ is the Prandtl number. Further this result is uniformly applicable for quite general nature of the boundaries.


Cite this article:
Jitender Kumar, Chitresh Kumari, Jyoti Prakash. Upper Limits to the Complex Growth Rate in Multicomponent Convection with Variable Viscosity. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:174-178.


REFERENCES:

1.         Turner, J. S., Double diffusive phenomena, Annual Review of Fluid Mechanics, 6 (1974)    37-56.

2.         Turner, J. S., Buoyancy Effects in Fluids, Cambridge University Press (1973).

3.         Brandt, A., Fernando, H. J. S., Double Diffusive Convection, American Geophysical Union, Washington, DC, (1996).

4.         Radko, T., Double-Diffusive convection, Cambridge university Press (2013).

5.         Sekar, R., Raju, K., Vasanthakumari, R., A linear analytical study of Soret-driven ferrothermohaline convection in an anisotropic porous medium, Journal of Magnetism and Magnetic Material, 331 (2013) 122-128.

6.         Kellner, M., Tilgner, A., Transition to finger convection in double diffusive convection, Physics of Fluids, 26 (2014) 094103.

7.         Nield, D. A., Kuznetsov, A. V., The onset of double-diffusive convection in a nanofluid layer, International Journal Heat Fluid Flow, 32(4) (2011) 771-776.

8.         Schmitt, R. W., Thermohaline convection at density ratios below one: A new regime for salt fingers, Journal of Marine Research, 69 (2011) 779-795.

9.         Griffiths, R. W., The influence of a third diffusing component upon the onset of convection, Journal of Fluid Mechanics, 92 (1979) 659-670.

10.      Griffiths, R. W., A note on the formation of salt finger and diffusive interfaces in three component systems, International Journal of Heat and Mass Transfer, 22 (1979) 1687-1693.

11.      Pearlstein, A. J., Harris, R. M., Terrones, G., The onset of convective instability in a triply diffusive fluid layer, Journal of Fluid Mechanics, 202 (1989) 443-465.

12.      Rionero, S., Triple diffusive convection in porous media, Acta Mechanics, 224 (2013a) 447-458.

13.      Lopez, A. R., Romero, L. A., Pearlstein, A. J., Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer, Physics of Fluids A, 2(6) (1990) 897-902.

14.      Terrones, G., Cross-diffusion effects on the stability criteria in a triply diffusive system, Physics of Fluids A, 5(9) (1993) 2172-2182.

15.      Poulikakos, D., The effect of a third diffusing component on the onset of convection in a horizontal porous layer, Physics of Fluids, 28 (10) (1985) 3172-3174.

16.      Terrones, G., Pearlstein, A. J., The onset of convection in a multicomponent fluid layer, Physics of Fluids A, 1(5) (1989) 845-853.

17.      Turner, J. S., Multicomponent convection, Annual Review of Fluid Mechanics, 17 (1985)         11-44.

18.      Rionero, S., Multicomponent diffusive-convective fluid motions in porous layers ultimately boundedness, absence of subcritical instabilities, and global nonlinear stability for any number of salts, Physics of Fluids, 25 (2013b) 054104(1-23).

19.      Ryzhkov, I. I., Shevtsova, V. M., Long wave instability of a multicomponent fluid layer with the soret effect, Physics of Fluids, 21 (2009) 014102(1-14).

20.      Ryzhkov, I. I., Long-Wave instability of a plane multicomponent mixture layer with the soret effect, Fluid Dynamics, 4(48) (2013) 477-490.

21.      Veronis G., On finite-amplitude instability in thermohaline convection, J. Mar. Res., 23, (1965), 1-17.

22.      Prakash, J., Kumar, R., Upper Limits for the Complex Growth Rate in Double Diffusive Convection with Viscosity Variations, Recent Trends in Algebra and Mechanics, Indo American Books, (2014), 257-264 (Delhi).

23.      Prakash, J., Kumar, R., Kumar, V., Upper Bounds for the Complex Growth Rate in Magnetohydrodynamic Triply Diffusive Convection with Viscosity Variations, H. P. U. Journal, 3(2), (2015), 83-90.

24.      Prakash, J., Kumar, R., Kumari, K., Linear Triply Diffusive Convection with Viscosity Variations, International Journal of Physical and Mathematical Sciences, 5(1), (2015), 186-196.

25.      Prakash, J., Manan, S., Singh, V., Linear Stability Analysis in Multicomponent Convection, International Journal of technology, 6(2), (2016), 113-117.

 

 

 

 

 





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA