Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Anu Sharma, Neeti Goel

Email(s): Email ID Not Available

Address: Anu Sharma1, Neeti Goel2 1 Department of Mathematics, Rajdhani College, University of Delhi, Raja Garden, Ring Road, New Delhi, 110015, India. 2Department of Mathematics, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalka Ji, New Delhi, 110019, India. *Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
In this work, we study theoretically the effect of lack of local thermal equilibrium and anisotropy on double-diffusive ferro convection in aporous medium. Stability analysis is carried out for ferrofluid layer contained between two stress-free boundaries using normal mode method. The eigen value problem is solved using regular perturbation technique to obtain critical thermal Rayleigh number. The impact of anisotropy parameter of permeability of porous medium, heat transfer coefficient and salinity Rayleigh number on the onset of convection are examined.


Cite this article:
Anu Sharma, Neeti Goel. Study of lack of thermal equilibrium and anisotropy effects on double-diffusive ferroconvection in porous medium. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:242-246


REFERENCES

[1] E. R. Lapwood., 1948,Proceedings  of the Cambridge Philosophical Society, 44:508-521.

[2] D. A. Nield and A. Bejan. Convection in Porous Media.  Springer, New York, 2013.

[3] D. A. S. Rees and I. Pop.   Local thermal nonequilibrium in porous Medium convection, volume Elsevier, Oxford, 2005.

[4] R. E. Rosenweig.   Ferrohydrodynamics.  Cambridge University Press, Cambridge, 1985.

[5] P. G. Baines  and S. E. Gill., 1969,Journal of Fluid Mechanics, 37:289–306.

[6] G. Vaidyanathan, R. Sekar, R. Hemalatha, Vasanthakumari, and S. Senthilnathan., 2005 Journal of Magnetism and Magnetic Materials, 288:460–469.

[7] Sunil, A. Sharma, R.C. Sharma, 2006, Inter J Thermal Sci45(4):347-58.

[8] Sunil, P. Sharma, and A. Mahajan., 2010, Journal of Geophysics and Engineering, 7:417–430.

[9] R. Sekar and K. Raju., 2014, Global Journal of Mathematical Analysis, 3(1):37–48.

[10] G. Vaidyanathan, R. Sekar, and A. Ramanathan., 2002, Indian Journal of ChemicalTechnology, 9:446–449.

[11] G. Suresh, R. Vasanthakumari  and P. Radja.,  2012, Int. J.of Eng. Tech. and Adv. Engineering, 2:51–55.

[12] M. Ravisha, I. S. Shivakumara, and A. L. Mamatha., 2017,Defect and Diffusion Forum, 378:137–156.

 

 

 

 

 

 





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA