REFERENCES:
[1] S. Choi. Enhancing
Thermal Conductivity of Fluids with Nanoparticles. In: Siginer DA, Wang HP,
Editors. Developments and Applications of Non-Newtonian Flows. American Society
of Mechanical Engineers, vol. 66, pp.99–105, 1995.
[2]
H. Masuda, A. Ebata, K. Teramae, N. Hishinuma. Alternation of Thermal
Conductivity and Viscosity of Liquid by
Dispersing Ultra-Fine Particles (Dispersion
of-Al2O3,
SiO2 and TiO2 Ultra-Fine Particles),
Netsu Bussei (Japan), vol. 4, pp. 227-233, 1993.
[3] J. Philip, P.D. Shima. Thermal
Properties of Nanofluids. Adv., Coll. and Interface Science, vol. 15, pp. 30-45, 2012.
[4] P.
Keblinski, L.W. Hu, J. L. Alvarado. A Benchmark Study on Thermal Conductivity
of Nanofluid. J. Appl. Phys., vol. 106, pp. 094312, 2009.
[5] R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G.
Rosengarten, R. Prashar, H. Tyagi. Small Particles, Big Impacts:
A review of the Diverse Applications of Nanofluids. J. Appl. Phys., vol. 113, pp. 011301, 2013.
[6] J. Buongiorno. Convective Transport in Nanofluids. ASME Journal of Heat Transfer,
vol. 128, pp. 240–250, 2006.
[7] D.Y. Tzou.
Thermal Instability of Nanofluids in Natural Convection,
Int.
Journal of Heat and Mass Transfer, vol. 51, pp. 2967-2979,
2008.
[8] D.A. Nield, A.V. Kuznetsov. Thermal
Instability in a Porous Medium Layer Saturated by a Nanofluid. Int. J. Heat
Mass Trans. vol. 52, pp. 5796-5801,
2009.
[9] A.V. Kuznetsov, D. A. Nield. Thermal
Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model. Trans.
Porous Medium, vol. 81, pp. 409-422, 2010.
[10] R.
Chand, G. C. Rana. On The Onset of Thermal
Convection in Rotating Nanofluid Layer Saturating a Darcy-Brinkman Porous
Medium. Int. J. of Heat and Mass Transfer, vol. 55, pp. 5417-5424, 2012.
[11] G.C. Rana, R. C. Thakur, S. K. Kango. On the Onset of
Double-Diffusive Convection in a Layer of Nanofluid under Rotation Saturating a
Porous Medium. Journal of Porous Media, vol. 17, no. 8, pp.657-667, 2014.
[12] D.
Yadav, G.S. Agrawal, R. Bhargava. Numerical
solution of a thermal instability problem in a rotating nanofluid layer. Int. J
Heat Mass Transf., vol. 63, pp. 313–322, 2013.
[13]
D. Yadav, G.S. Agrawal, R. Bhargava.Thermal instability in a nanofluid layer
with vertical magnetic field. J. Eng. Math. vol. 80, pp.147–164, 2013.
[14]
R. Chand, G.C. Rana, S. Kumar. Variable Gravity Effects on Thermal
Instability of Nanofluid in Anisotropic Porous Medium. Int. J. of Appl. Mech. and Engg., vol. 18, no. 3,
pp. 631-642, 2013.
[15] D.A. Nield, A. V. Kuznetsov. Thermal
Instability in a Porous Medium Layer Saturated by a Nanofluid: A Revised Model,
Int. J. of Heat and Mass Transfer, vol. 68, no. 4, pp. 211-214, 2014.
[16] R. Chand, G.C. Rana.
Magneto
Convection in a Layer of Nanofluid in Porous Medium-A More Realistic Approach. Journal
of Nanofluids, vol. 4, pp.196-202, 2015.
[17] R. Chand, G.C. Rana. Thermal
Instability in a Brinkman Porous Medium Saturated by Nanofluid with No
Nanoparticle Flux on Boundaries, Special Topics & Reviews in Porous Media:
An International Journal, vol. 5, no. 4, pp. 277-286, 2014.
[18] R. Chand, S.K. Kango, G.C. Rana. Thermal Instability in
Anisotropic Porous Medium Saturated by a Nanofluid-A Realistic
Approach, NSNTAIJ, vol. 8, no. 12, pp. 445-453, 2014.
[19] G.C. Rana, R. Chand.
On the
Thermal Convection in a Rotating Nanofluid Layer Saturating a Darcy-Brinkman Porous
Medium: A More Realistic Model, Journal of Porous Media, vol. 18, no. 6, pp. 629-635,
2015.
[20] D. A. Nield, A.V. Kuznetsov. Effects of
Temperature-Dependent Viscosity On Forced Convection in a Porous Medium:
Layered Medium Analysis, Journal of Porous Media, vol. 6, pp. 213-222, 2003.
[21] D. A. Nield, A.V. Kuznetsov. The Onset of Convection
in a Layer of Porous Medium saturated by nanofluid: effects of conductivity and
viscosity variation and cross-diffusion, Trans. Porous Media, vol. 92, pp. 837-846,
2012.
[22] D. Yadav, G.S. Agrawal, R. Bhargava. The onset of double diffusive nanofluid
convection in a layer of a saturated porous medium with thermal conductivity
and viscosity variation. J. Porous media, vol. 16, pp.105-121, 2013.
[23] M. Dhananjaya and I.S. Shivkumara. Effect of Variable Viscosity
on Thermal Convective Instability in a Nanofluid Saturated Porous Layer, Int.
Journal of Mathematical Archive, vol. 5, no. 3, pp. 38-46, 2014.
[24] S. Chandrasekhar. Hydrodynamic and
Hydromagnetic
Stability. Oxford University Press Dover Publication, New York, 1981.