Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Ramesh Chand, S. K. Kango

Email(s): rameshnahan@yahoo.com

Address: Ramesh Chand1*, S. K. Kango2
1Department of Mathematics, Atal Bihari Vajpayee Government Degree College Bangana, HP, India
2Department of Mathematics, NSCBM Government College Hamirpur, HP, India
*Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
Thermal instability of nanofluid with variable viscosity in a porous medium for more realistic boundary conditions is investigated theoretically. For porous medium the Darcy model is considered. The model used incorporates the effect of Brownian diffusion and thermophoresis. The eigen value problem is solved by employing the Galerkin weighted residuals method. The influence of the variable viscosity parameter, Lewis number, nanoparticle Rayleigh number, modified diffusivity ratio and porosity parameter on the stationary convection studied analytically and found that variable viscosity parameter, Lewis number, modified diffusivity ratio and nanoparticle Rayleigh number destabilizes while porosity parameter stabilize the stationary convection.


Cite this article:
Ramesh Chand, S. K. Kango. Thermal Instability of Nanofluid Layer in A Porous Medium with Variable Viscosity. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:18-26


REFERENCES:

[1]        S. Choi. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Siginer DA, Wang HP, Editors. Developments and Applications of Non-Newtonian Flows. American Society of Mechanical Engineers, vol. 66, pp.99–105, 1995.

[2]       H. Masuda, A. Ebata, K. Teramae, N. Hishinuma. Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of-Al2O3, SiO2 and TiO2 Ultra-Fine Particles), Netsu Bussei (Japan), vol. 4, pp. 227-233, 1993.

[3]        J. Philip, P.D. Shima. Thermal Properties of Nanofluids. Adv., Coll. and Interface Science, vol. 15, pp. 30-45, 2012.

[4]        P. Keblinski, L.W. Hu, J. L. Alvarado. A Benchmark Study on Thermal Conductivity of Nanofluid. J. Appl. Phys., vol. 106, pp. 094312, 2009. 

[5]        R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prashar, H. Tyagi. Small Particles, Big Impacts: A review of the Diverse Applications of Nanofluids. J. Appl. Phys., vol. 113, pp. 011301, 2013.

[6]        J. Buongiorno. Convective Transport in Nanofluids. ASME Journal of Heat Transfer, vol. 128, pp. 240–250, 2006.

[7]        D.Y. Tzou. Thermal Instability of Nanofluids in Natural Convection, Int. Journal of Heat and Mass Transfer, vol. 51, pp. 2967-2979, 2008.

[8]        D.A. Nield, A.V. Kuznetsov. Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid. Int. J. Heat Mass Trans. vol. 52, pp. 5796-5801, 2009.

[9]           A.V. Kuznetsov, D. A. Nield. Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model. Trans. Porous Medium, vol. 81, pp. 409-422, 2010.

[10]     R. Chand, G. C. Rana. On The Onset of Thermal Convection in Rotating Nanofluid Layer Saturating a Darcy-Brinkman Porous Medium. Int. J. of Heat and Mass Transfer, vol. 55, pp. 5417-5424, 2012.

[11]     G.C. Rana, R. C. Thakur, S. K. Kango. On the Onset of Double-Diffusive Convection in a Layer of Nanofluid under Rotation Saturating a Porous Medium. Journal of Porous Media, vol. 17, no. 8, pp.657-667, 2014.

[12]     D. Yadav, G.S. Agrawal, R. Bhargava. Numerical solution of a thermal instability problem in a rotating nanofluid layer. Int. J Heat Mass Transf., vol. 63, pp. 313–322, 2013.

 [13]    D. Yadav, G.S. Agrawal, R. Bhargava.Thermal instability in a nanofluid layer with vertical magnetic field. J. Eng. Math. vol. 80, pp.147–164, 2013.

[14]     R. Chand, G.C. Rana, S. Kumar. Variable Gravity Effects on Thermal Instability of Nanofluid in Anisotropic Porous Medium. Int.  J. of Appl. Mech. and Engg., vol. 18, no. 3, pp. 631-642, 2013.

 [15]    D.A. Nield, A. V.  Kuznetsov. Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: A Revised Model, Int. J. of Heat and Mass Transfer, vol. 68, no. 4, pp.  211-214, 2014.

[16]     R. Chand, G.C. Rana. Magneto Convection in a Layer of Nanofluid in Porous Medium-A More Realistic Approach. Journal of Nanofluids, vol. 4, pp.196-202, 2015.

[17]     R. Chand, G.C. Rana. Thermal Instability in a Brinkman Porous Medium Saturated by Nanofluid with No Nanoparticle Flux on Boundaries, Special Topics & Reviews in Porous Media: An International Journal, vol. 5, no. 4, pp. 277-286, 2014.

[18]     R. Chand, S.K. Kango, G.C. Rana. Thermal Instability in Anisotropic Porous Medium Saturated by a Nanofluid-A Realistic Approach, NSNTAIJ, vol. 8, no. 12, pp. 445-453, 2014.

[19]     G.C. Rana, R. Chand.  On the Thermal Convection in a Rotating Nanofluid Layer Saturating a Darcy-Brinkman Porous Medium: A More Realistic Model, Journal of Porous Media, vol. 18, no. 6, pp. 629-635, 2015.

[20]     D. A. Nield, A.V. Kuznetsov. Effects of Temperature-Dependent Viscosity On Forced Convection in a Porous Medium: Layered Medium Analysis, Journal of Porous Media, vol. 6, pp. 213-222, 2003.

[21]     D. A. Nield, A.V. Kuznetsov. The Onset of Convection in a Layer of Porous Medium saturated by nanofluid: effects of conductivity and viscosity variation and cross-diffusion, Trans. Porous Media, vol. 92, pp. 837-846, 2012.

[22]     D. Yadav, G.S. Agrawal, R. Bhargava. The onset of double diffusive nanofluid convection in a layer of a saturated porous medium with thermal conductivity and viscosity variation. J. Porous media, vol. 16, pp.105-121, 2013.

[23]     M. Dhananjaya and I.S. Shivkumara. Effect of Variable Viscosity on Thermal Convective Instability in a Nanofluid Saturated Porous Layer, Int. Journal of Mathematical Archive, vol. 5, no. 3, pp. 38-46, 2014. 

[24]     S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford University Press Dover Publication, New York, 1981.





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA