Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Rekha Devi

Email(s): rekha111179@gmail.com

Address: Rekha Devi Assistant Prof. Government College Jhandutta, Distt. Bilaspur (H.P) *Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
The enhanced thermophysical properties of nanofluids and their capacity to be incorporated into a variety of thermal applications, including improving the efficiency of heat exchangers used in industries and solar energy harvesting for renewable energy production, are the main reasons for the growing interest in these materials. Nanfluids have various thermo-physical properties such as thermal conductivity, thermal diffusivity, viscosity etc. Finally, a conclusion on the merits and demerits of nanofluids is presented along with nanofluids models. The conclusion on the benefits and drawbacks of nanofluids is offered together with nanofluids models in the end. Nanofluids have enormous applications in sciences and technology. Commonly, Tiwari and Das nanofluid model and Buongiorno nanofluids model are utilized to examine the convective heat transmission in nanofluids.


Cite this article:
Rekha Devi. An Overview of Nanofluids in Different Heat Transfer Mechanisms. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:36-44.


REFERENCES:

1.              Choi, S. U. S., “Nanofluids: from vision to reality through research,” Journal of Heat Transfer, vol.131, no.3, pp.1-9, 2009.

2.              Sarit Kumar Das, Nandy Putra, Peter Thiesen, Wilfried Roetzel - “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids”, Journal of Heat Transfer ASME.

3.              Devi reddy Sandhya, Mekala Chandra Sekhara Reddy, Veeredhi Vasudeva Rao - “Improving the cooling performance of automobile radiator with ethylene glycol water based TiO2 nanofluids”, Journals of International Communications in Heat and Mass Transfer Vol.78 (2016) 121126.

4.              Ju. YS, Kimj, Hung M T. Experimental study of heat conduction in aqueous of suspensions of aluminum oxide nanoparticles. J. Heat Transf. 2008; 130:092403–6.

5.              L. Syam Sundar, Manoj K. Singh, E. Venkata Ramana, Budhendra Singh, Jose Gracio1 Antonio C. M. Sousa -” Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids.

6.              K. Abdul Hamid, W. H. Azmi, RizalmanMamat, N. A. Usri1 and GholamhassanNajafi - “Effect of Titanium Oxide Nanofluid Concentration on Pressure Drop”, ARPN Journal of Engineering and Applied Sciences, VOL. 10, NO. 17, September 2015.

7.              M. Tajik Jamal-Abadi, A. H. Zamzamian - “Thermal Conductivity of Cu and Al-Water Nanofluids”, International Journal of Engineering Vol. 26, No. 8, (August 2013) 821-828.

8.              S. Senthilraja and K.C.K. Vijayakumar - “Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid using Double Pipe Heat Exchanger”, International Journal of Engineering Research and Technology Vol 6, Number 5 (2013), pp. 675-680. 8 1234567890‘’ “” International Conference on Mechanical, Materials and Renewable Energy IOP Publishing IOP Conf. Series: Materials Science and Engineering 377 (2018) 012084 doi:10.1088/1757-899X/377/1/012084

9.              Wesley Williams, Jacopo Buongiorno and Lin-Wen Hu - “Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes”, Journal of Heat Transfer APRIL 2008, Vol. 130.

10.           Bhaskar C. Sahoo, Debendra K. Das, Ravikanth S. Vajjha Jagannadha R. Satti - “Measurement of the Thermal Conductivity of Silicon Dioxide Nanofluid and Development of Correlations”.

11.           S. Iyahraja and J. Selwin Rajadurai - “Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles

12.           Choi, S.U.S. Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows; Siginer, D.A., Wang, H.P., Eds.; ASME: New York, NY, USA, 1995.

13.           Prasher, R.; Song, D.; Wang, J.; Phelan, P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 2006, 89, 133108–133110.

14.           Eastman, J.A.; Choi, U.S.; Li, S.; Thompson, L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids. In Proceedings of the Materials Research Society Symposium; Materials Research Society: Pittsburgh, PA, USA, 1997; Volume 457, pp. 3–11.

15.           Hong, T.K.; Yang, H.S.; Choi, C.J. Study of the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 2005, 97, 064311.

16.           Saidur, R.; Meng, T.C.; Said, Z.; Hasanuzzaman, M.; Kamyar, A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int. J. Heat Mass Transf. 2012, 55, 5899–5907.

17.           Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.; Kim, J.H.; Choi, S.U.S.; Choi, C.J. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transf. 2008, 51, 2651–2656.

18.           Luo, Z.Y.; Wang, C.; Wei, W.; Xiao, G.; Ni, M.J. Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int. J. Heat Mass Transf. 2014, 75, 262–271.

19.           Murshed, S.; Leong, K.; Yang, C. Enhanced thermal conductivity of TiO2—Water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373.

20.           Xin Fang, Qing Ding, Li-Wu Fan1 - “Thermal Conductivity Enhancement of Ethylene Glycol-Based Suspensions in the Presence of Silver Nanoparticles of Various Shapes”.

21.           S. Iyahraja and J. Selwin Rajadurai - “Study of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles.

22.           M. Siva Eswara Rao, Dowluru Sreeramulu and D. Asiri Naidu - “Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger”, IOP Conf. Series:

23.           Pantzali MN, Mouza AA, Paras SV. Investigating the efficacy of nanofluid as coolants in plate heat exchangers (PHE). Chem Eng Sci 2009; 64:3290–300.

24.           Pantzali MN, Kanaris G, Antoniadis KD, Mouza AA, Paras SV. Effect of nanofluid on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow 2009; 30:691–9.

25.           Das, S.K., Choi, S.U.S., Yu, W., and Pradeep, T., 2007, Nanofluids: Science and Technology, Wiley, New York.

26.           Buongiorno, J.: Convective transport in nanofluids. ASME J Heat Transf. 128(3), 240–250 (2006). https://doi.org/10.1115/1.2150834

27.           S.P. Jang and S.U.S. Choi, ―Cooling performance of a micro channel heat sink with nanofluids, ‖ Applied Thermal Engineering, vol. 26, no. 17-18, pp. 2457–2463, 2006.

28.           Nguyen, C. T., Roy, G., Gauthier, C., and Galanis, N., “Heat transfer enhancement using Al2Al2O3O3-water nanofluid for an electronic liquid cooling system,” Applied Thermal Engineering, vol. 27, no. 8–9, pp. 15011506, 2007.

29.           H. Xie and L. Chen, ―Adjustable thermal conductivity in carbon nanotubenanofluids, ‖ Physics Letters Section A, vol. 373, no. 21, pp. 1861–1864, 2009.

30.           W. Yu, D. M. France, S. U. S. Choi, and J. L. Routbort, ―Review and assessment of nanofluid technology for transportation and other applications, ‖ Tech. Rep. 78, ANL/ESD/07-9, Argonne National Laboratory, 2007.

31.           S. C. Tzeng, C. W. Lin, and K. D. Huang, ―Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles, ‖ Acta Mechanica, vol. 179, no. 1-2, pp. 11–23, 2005.

32.           J. K. Kim, J. Y. Jung, and Y. T. Kang, ―Absorption performance enhancement by nanoparticles and chemical surfactants in binary nanofluids, ‖ International Journal of Refrigeration, vol. 30, no. 1, pp. 50–57, 2007.

33.           D. P. Kulkarni, D. K. Das, and R. S. Vajjha, ―Application of nanofluids in heating buildings and reducing pollution, ‖ Applied Energy, vol. 86, no. 12, pp. 2566–2573, 2009.

34.           X. Ma, F. Su, J. Chen, and Y. Zhang, ―Heat and mass transfer enhancement of the bubble absorption for a binary nanofluid, ‖ Journal of Mechanical Science and Technology, vol. 21, p. 1813, 2007.

35.           M. F. Demirbas, ―Thermal energy storage and phase change materials: an overview, ‖ Energy Sources Part B, vol. 1, no. 1, pp. 85–95, 2006.

36.           S. Wu, D. Zhu, X. Zhang, and J. Huang, ―Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM), ‖ Energy and Fuels, vol. 24, no. 3, pp. 1894–1898, 2010.

37.           H. L. Yu, Y. Xu, P. J. Shi, B. S. Xu, X. L. Wang, and Q. Liu, ―Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant, ‖ Transactions of Nonferrous Metals Society of China, vol. 18, no. 3, pp. 636–641, 2008.

38.           H. Zhu, C. Zhang, Y. Tang, J. Wang, B. Ren, and Y. Yin, ―Preparation and thermal conductivity of suspensions of graphite nanoparticles, ‖ Carbon, vol. 45, no. 1, pp. 226–228, 2007.

39.           A. K. Singh and V. S. Raykar, ―Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties, ‖ Colloid and Polymer Science, vol. 286, no. 14-15, pp. 1667–1673, 2008.

40.           D. Li and R. B. Kaner, ―Processable stabilizer-free polyaniline nanofiber aqueous colloids, ‖ Chemical Communications, vol. 14, no. 26, pp. 3286–3288, 2005.

41.           T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, ―Nanofluid based direct absorption solar collector, ‖ Journal of Renewable and Sustainable Energy, vol. 2, no. 3, Article ID 033102, 13 pages, 2010.

42.           J. Zhou, Z. Wu, Z. Zhang, W. Liu, and Q. Xue, ―Tribological behavior and lubricating mechanism of Cu nanoparticles in oil, ‖ Tribology Letters, vol. 8, no. 4, pp. 213–218, 2000.

43.           L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, ―Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), ‖ Journal of Nanoparticle Research, vol. 9, no. 3, pp. 479–489, 2007.

44.           R. Jalal, E. K. Goharshadi, M. Abareshi, M. Moosavi, A. Yousefi, and P. Nancarrow, ―ZnO nanofluids: green synthesis, characterization, and antibacterial activity, ‖ Materials Chemistry and Physics, vol. 121, no. 1-2, pp. 198–201, 2010.

45.           N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, ―Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, ‖ FEMS Microbiology Letters, vol. 279,no. 1, pp. 71–76, 2008.

46.           R. E. Rosensweig, ―Magnetic fluids, ‖ Annual Review of Fluid Mechanics, vol. 19, pp. 437–463, 1987.

47.           M. F. Demirbas, ―Thermal energy storage and phase change materials: an overview, ‖ Energy Sources Part B, vol. 1, no. 1, pp. 85–95, 2006.

48.           N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, ―Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms, ‖ FEMS Microbiology Letters, vol. 279, no. 1, pp. 71–76, 2008.

49.           Jackson, E., Investigation into the pool-boiling characteristics of gold nanofluids, M.S. thesis, Columbia, Mo, USA University of Missouri-Columbia. 2007.

50.           Singh, D., Toutbort, J., Chen, G., “Heavy vehicle systems optimization merit review and peer evaluation,” Annual Report, Argonne National Laboratory. 2006.

51.           Shen, B., Shih, A. J., Tung, S. C., and Hunter, M., “Application of nanofluids in minimum quantity lubrication grinding,” Tribology and Lubrication Technology

52.           Kao, M. J., Chang, H., Wu, Y. Y., Tsung, T. T., and Lin, H. M. , “Producing aluminum-oxide brake nanofluids using plasma charging system,” Journal of the Chinese Society of Mechanical Engineers, vol. 28, no. 2, pp. 123131, 2007.





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA