REFERENCES:
1.
Choi,
S. U. S., “Nanofluids: from vision to reality through
research,” Journal of Heat Transfer, vol.131, no.3, pp.1-9, 2009.
2.
Sarit
Kumar Das, Nandy Putra, Peter Thiesen, Wilfried Roetzel - “Temperature Dependence
of Thermal Conductivity Enhancement for Nanofluids”, Journal of Heat Transfer ASME.
3.
Devi reddy
Sandhya, Mekala Chandra Sekhara Reddy, Veeredhi Vasudeva Rao - “Improving the cooling
performance of automobile radiator with ethylene glycol water based TiO2 nanofluids”,
Journals of International Communications in Heat and Mass Transfer Vol.78 (2016)
121126.
4.
Ju. YS,
Kimj, Hung M T. Experimental study of heat conduction in aqueous of suspensions
of aluminum oxide nanoparticles. J. Heat Transf. 2008; 130:092403–6.
5.
L. Syam
Sundar, Manoj K. Singh, E. Venkata Ramana, Budhendra Singh, Jose Gracio1 Antonio
C. M. Sousa -” Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel
Nanocomposite Nanofluids.
6.
K. Abdul Hamid, W. H. Azmi, RizalmanMamat,
N. A. Usri1 and GholamhassanNajafi - “Effect of Titanium Oxide Nanofluid Concentration
on Pressure Drop”, ARPN Journal of Engineering and Applied Sciences, VOL. 10, NO.
17, September 2015.
7.
M. Tajik
Jamal-Abadi, A. H. Zamzamian - “Thermal Conductivity of Cu and Al-Water Nanofluids”,
International Journal of Engineering Vol. 26, No. 8, (August 2013) 821-828.
8.
S. Senthilraja
and K.C.K. Vijayakumar - “Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid
using Double Pipe Heat Exchanger”, International Journal of Engineering Research
and Technology Vol 6, Number 5 (2013), pp. 675-680. 8 1234567890‘’ “” International
Conference on Mechanical, Materials and Renewable Energy IOP Publishing IOP Conf.
Series: Materials Science and Engineering 377 (2018) 012084 doi:10.1088/1757-899X/377/1/012084
9.
Wesley
Williams, Jacopo Buongiorno and Lin-Wen Hu - “Experimental Investigation of Turbulent
Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle
Colloids (Nanofluids) in Horizontal Tubes”, Journal of Heat Transfer APRIL 2008,
Vol. 130.
10.
Bhaskar
C. Sahoo, Debendra K. Das, Ravikanth S. Vajjha Jagannadha R. Satti - “Measurement
of the Thermal Conductivity of Silicon Dioxide Nanofluid and Development of Correlations”.
11.
S. Iyahraja
and J. Selwin Rajadurai - “Study of thermal conductivity enhancement of aqueous
suspensions containing silver nanoparticles
12.
Choi,
S.U.S. Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments
and Applications of Non-Newtonian Flows; Siginer, D.A., Wang, H.P., Eds.; ASME:
New York, NY, USA, 1995.
13.
Prasher, R.; Song, D.; Wang, J.; Phelan, P.
Measurements of nanofluid viscosity and its implications for thermal applications.
Appl. Phys. Lett. 2006, 89, 133108–133110.
14.
Eastman, J.A.; Choi, U.S.; Li, S.; Thompson,
L.J.; Lee, S. Enhanced thermal conductivity through the development of nanofluids.
In Proceedings of the Materials Research Society Symposium; Materials Research Society:
Pittsburgh, PA, USA, 1997; Volume 457, pp. 3–11.
15.
Hong, T.K.; Yang, H.S.; Choi, C.J. Study of
the enhanced thermal conductivity of Fe nanofluids. J. Appl. Phys. 2005, 97, 064311.
16.
Saidur, R.; Meng, T.C.; Said, Z.; Hasanuzzaman,
M.; Kamyar, A. Evaluation of the effect of nanofluid-based absorbers on direct solar
collector. Int. J. Heat Mass Transf. 2012, 55, 5899–5907.
17.
Lee, J.H.; Hwang, K.S.; Jang, S.P.; Lee, B.H.;
Kim, J.H.; Choi, S.U.S.; Choi, C.J. Effective viscosities and thermal conductivities
of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles.
Int. J. Heat Mass Transf. 2008, 51, 2651–2656.
18.
Luo, Z.Y.; Wang, C.; Wei, W.; Xiao, G.; Ni,
M.J. Performance improvement of a nanofluid solar collector based on direct absorption
collection (DAC) concepts. Int. J. Heat Mass Transf. 2014, 75, 262–271.
19.
Murshed, S.; Leong, K.; Yang, C. Enhanced thermal
conductivity of TiO2—Water based nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373.
20.
Xin Fang,
Qing Ding, Li-Wu Fan1 - “Thermal Conductivity Enhancement of Ethylene Glycol-Based
Suspensions in the Presence of Silver Nanoparticles of Various Shapes”.
21.
S. Iyahraja and J. Selwin Rajadurai - “Study
of thermal conductivity enhancement of aqueous suspensions containing silver nanoparticles.
22.
M. Siva
Eswara Rao, Dowluru Sreeramulu and D. Asiri Naidu - “Experimental Investigation
of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger”, IOP
Conf. Series:
23.
Pantzali MN, Mouza AA, Paras SV. Investigating
the efficacy of nanofluid as coolants in plate heat exchangers (PHE). Chem Eng Sci
2009; 64:3290–300.
24.
Pantzali MN, Kanaris G, Antoniadis KD, Mouza
AA, Paras SV. Effect of nanofluid on the performance of a miniature plate heat exchanger
with modulated surface. Int J Heat Fluid Flow 2009; 30:691–9.
25.
Das, S.K.,
Choi, S.U.S., Yu, W., and Pradeep, T., 2007, Nanofluids: Science and Technology,
Wiley, New York.
26.
Buongiorno, J.: Convective transport in nanofluids.
ASME J Heat Transf. 128(3), 240–250 (2006). https://doi.org/10.1115/1.2150834
27.
S.P. Jang and S.U.S. Choi, ―Cooling performance
of a micro channel heat sink with nanofluids, ‖ Applied Thermal Engineering, vol.
26, no. 17-18, pp. 2457–2463, 2006.
28.
Nguyen, C. T., Roy, G., Gauthier, C., and Galanis,
N., “Heat transfer enhancement using Al2Al2O3O3-water nanofluid for an electronic liquid cooling system,”
Applied Thermal Engineering, vol. 27, no. 8–9, pp. 1501–1506, 2007.
29.
H. Xie and L. Chen, ―Adjustable thermal conductivity
in carbon nanotubenanofluids, ‖ Physics Letters Section A, vol. 373, no. 21, pp.
1861–1864, 2009.
30.
W. Yu, D. M. France, S. U. S. Choi, and J.
L. Routbort, ―Review and assessment of nanofluid technology for transportation and
other applications, ‖ Tech. Rep. 78, ANL/ESD/07-9, Argonne National Laboratory,
2007.
31.
S. C. Tzeng, C. W. Lin, and K. D. Huang, ―Heat
transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive
vehicles, ‖ Acta Mechanica, vol. 179, no. 1-2, pp. 11–23, 2005.
32.
J. K. Kim, J. Y. Jung, and Y. T. Kang, ―Absorption
performance enhancement by nanoparticles and chemical surfactants in binary nanofluids,
‖ International Journal of Refrigeration, vol. 30, no. 1, pp. 50–57, 2007.
33.
D. P. Kulkarni, D. K. Das, and R. S. Vajjha,
―Application of nanofluids in heating buildings and reducing pollution, ‖ Applied
Energy, vol. 86, no. 12, pp. 2566–2573, 2009.
34.
X. Ma, F. Su, J. Chen, and Y. Zhang, ―Heat
and mass transfer enhancement of the bubble absorption for a binary nanofluid, ‖
Journal of Mechanical Science and Technology, vol. 21, p. 1813, 2007.
35.
M. F. Demirbas, ―Thermal energy storage and
phase change materials: an overview, ‖ Energy Sources Part B, vol. 1, no. 1, pp.
85–95, 2006.
36.
S. Wu, D. Zhu, X. Zhang, and J. Huang, ―Preparation
and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material
(PCM), ‖ Energy and Fuels, vol. 24, no. 3, pp. 1894–1898, 2010.
37.
H. L. Yu, Y. Xu, P. J. Shi, B. S. Xu, X. L.
Wang, and Q. Liu, ―Tribological properties and lubricating mechanisms of Cu nanoparticles
in lubricant, ‖ Transactions of Nonferrous Metals Society of China, vol. 18, no.
3, pp. 636–641, 2008.
38.
H. Zhu,
C. Zhang, Y. Tang, J. Wang, B. Ren, and Y. Yin, ―Preparation and thermal conductivity
of suspensions of graphite nanoparticles, ‖ Carbon, vol. 45, no. 1, pp. 226–228,
2007.
39.
A. K.
Singh and V. S. Raykar, ―Microwave synthesis of silver nanofluids with polyvinylpyrrolidone
(PVP) and their transport properties, ‖ Colloid and Polymer Science, vol. 286, no.
14-15, pp. 1667–1673, 2008.
40.
D. Li
and R. B. Kaner, ―Processable stabilizer-free polyaniline nanofiber aqueous colloids,
‖ Chemical Communications, vol. 14, no. 26, pp. 3286–3288, 2005.
41.
T. P. Otanicar, P. E. Phelan, R. S. Prasher,
G. Rosengarten, and R. A. Taylor, ―Nanofluid based direct absorption solar collector,
‖ Journal of Renewable and Sustainable Energy, vol. 2, no. 3, Article ID 033102,
13 pages, 2010.
42.
J. Zhou,
Z. Wu, Z. Zhang, W. Liu, and Q. Xue, ―Tribological behavior and lubricating mechanism
of Cu nanoparticles in oil, ‖ Tribology Letters, vol. 8, no. 4, pp. 213–218, 2000.
43.
L. Zhang, Y. Jiang, Y. Ding, M. Povey, and
D. York, ―Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles
(ZnO nanofluids), ‖ Journal of Nanoparticle Research, vol. 9, no. 3, pp. 479–489,
2007.
44.
R. Jalal, E. K. Goharshadi, M. Abareshi, M.
Moosavi, A. Yousefi, and P. Nancarrow, ―ZnO nanofluids: green synthesis, characterization,
and antibacterial activity, ‖ Materials Chemistry and Physics, vol. 121, no. 1-2,
pp. 198–201, 2010.
45.
N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna,
―Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms,
‖ FEMS Microbiology Letters, vol. 279,no. 1, pp. 71–76, 2008.
46.
R. E. Rosensweig, ―Magnetic fluids, ‖ Annual
Review of Fluid Mechanics, vol. 19, pp. 437–463, 1987.
47.
M. F. Demirbas, ―Thermal energy storage and
phase change materials: an overview, ‖ Energy Sources Part B, vol. 1, no. 1, pp.
85–95, 2006.
48.
N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna,
―Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms,
‖ FEMS Microbiology Letters, vol. 279, no. 1, pp. 71–76, 2008.
49.
Jackson, E., Investigation into the
pool-boiling characteristics of gold nanofluids, M.S. thesis, Columbia, Mo, USA University
of Missouri-Columbia. 2007.
50.
Singh, D., Toutbort, J., Chen, G., “Heavy vehicle systems optimization merit review and
peer evaluation,” Annual Report, Argonne
National Laboratory. 2006.
51.
Shen, B., Shih, A. J., Tung, S. C., and
Hunter, M., “Application of nanofluids in minimum
quantity lubrication grinding,” Tribology and Lubrication Technology
52.
Kao, M. J., Chang, H., Wu, Y. Y., Tsung,
T. T., and Lin, H. M. , “Producing aluminum-oxide
brake nanofluids using plasma charging system,” Journal of the Chinese
Society of Mechanical Engineers, vol. 28, no. 2, pp. 123–131, 2007.