Author(s):
Mahesh Chaudhari, Umang Chaudhary
Email(s):
maheshdchaudhary@yahoo.com
Address:
Mahesh Chaudhari1*, Umang Chaudhary2
1Department of Physics, Shri Jayendrapuri Arts and Science College, Veer Narmad South Gujarat University Surat, Bharuch-392001, Gujarat, India
2Department of Physics, Smt. G.B. Pavaya and Smt. P.S. Pavaya Science (M.Sc.) College, Palanpur-385001, Gujarat, India
*Corresponding
Published In:
Conference Proceeding, Proceeding of ICAMAS-2025
Year of Publication:
July, 2025
Online since:
July 11, 2025
DOI:
Not Available
ABSTRACT:
Crystalline CaTiO3 perovskite is synthesized by annealing heat treatment. The theoretical tolerance factor of CaTiO3 came out to be 0.95 shows the high structural stability. The grown crystalline CaTiO3 is characterized by X-ray diffraction (XRD) to evaluate their structural phase and properties. The X-ray diffraction peaks are appears sharp and high intense shows the high crystalline form of grown CaTiO3. The diffractogram of grown CaTiO3 are indexed and analyzed using Powder-X software with JCPDS No. 42-0423 shows the only single phase of CaTiO3. No any other secondary phase or impurities are observed. Crystallite size of grown CaTiO3 are evaluated by Scherrer’s formula and Hall-Williamson plot using XRD. The structural properties such as strain, dislocation density, volume of unit cell and specific surface area (SSA) are evaluated and discussed in details.
Cite this article:
Mahesh Chaudhari, Umang Chaudhary. Synthesis and structural properties of CaTiO3 perovskite. Proceeding of ICAMAS-2025.87-92.
REFERENCE:
1. A. Chilvery, S. Palwai, P. Guggilla, K. Wren, D. Edinburgh, Perovskite Materials: Recent Advancements and Challenges (2019), https://doi.org/10.5772/intechopen.88500
2. M. Pena, J. Fierro, Chem. Rev., 101 (2001) 1981-2018. https://doi.org/10.1021/cr980129f
3. A. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat., 4 (2000) 3-26. https://doi.org/10.1007/s100190000062
4. P. Docampo, T. Bein, Acc. Chem. Res., 49 (2016) 339-346. https://doi.org/10.1021/acs.accounts.5b00465
5. H. Megaw, Crystal structure of double oxides of the perovskite type, Proceedings of the Physical Society, 58 (1946) 133. https://doi.org/10.1088/0959-5309/58/2/301
6. M. Moreira, E. Paris, G. do Nascimento, V. Longo, J. Sambrano, V. Mastelaro, M. Bernardi, J. Andrés, J. Varela, E. Longo, Acta Materialia, 57 (2009) 5174-5185. https://doi.org/10.1016/j.actamat.2009.07.019
7. G. Kieslich, S. Sun, A. Cheetham, Chem. Sci., 6(6) (2015) 3430-3433. https://doi.org/10.1039/C5SC00961H
8. P. Parhi, T. Karthik, V. Manivannan, J. Alloys Compd., 465 (2008) 380-386. https://doi.org/10.1016/j.jallcom.2007.10.089
9. X. Trinh, N. Tran, H. Seo, H. Kim, Solar Energy, 206 (2020) 301-307. https://doi.org/10.1016/j.solener.2020.05.063
10. Q. Meng, Y. Chen, Y. Xiao, J. Sun, X. Zhang, C. Han, H. Gao, Y. Zhang, H. Yan, J. Mater. Sci.: Mater. Electron., 32 (2021) 12784-12792. https://doi.org/10.1007/s10854-020-03029-y
11. S. Sasaki, C. Prewitt, J. Bass, W. Schulze, Acta Cryst., 43 (1987) 1668-1674. https://doi.org/10.1107/S0108270187090620
12. H. Rooksby, Nature, 155 (1945) 484-484. https://doi.org/10.1038/155484a0
13. A. Stein, S. Keller, T. Mallouk, Science, 259 (1993) 1558-1564. https://doi.org/10.1126/science.259.5101.1558
14. S. Chaki, M. Chaudhary, M. Deshpande, Adv. Nat. Sci: Nanosci. Nanotechnol., 5 (2014) 045010. https://doi.org/10.1088/2043-6262/5/4/045010
15. N. Suthan Kissinger, M. Jayachandran, K. Permual, C. Sanjeevi Raja, Bull. Mater. Sci., 30 (2007) 547–551. https://doi.org/10.1007/s12034-007-0085-7
16. Mahesh Chaudhari, Sunil Chaki, S. M. Bharthaniya, A. M. Agarwal, Discov. Chem., 1 (2024). https://doi.org/10.1007/s44371-024-00053-3