Conference Proceeding

Author(s): Mahesh Chaudhari, Umang Chaudhary

Email(s): maheshdchaudhary@yahoo.com

Address: Mahesh Chaudhari1*, Umang Chaudhary2
1Department of Physics, Shri Jayendrapuri Arts and Science College, Veer Narmad South Gujarat University Surat, Bharuch-392001, Gujarat, India
2Department of Physics, Smt. G.B. Pavaya and Smt. P.S. Pavaya Science (M.Sc.) College, Palanpur-385001, Gujarat, India
*Corresponding

Published In:   Conference Proceeding, Proceeding of ICAMAS-2025

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
Crystalline CaTiO3 perovskite is synthesized by annealing heat treatment. The theoretical tolerance factor of CaTiO3 came out to be 0.95 shows the high structural stability. The grown crystalline CaTiO3 is characterized by X-ray diffraction (XRD) to evaluate their structural phase and properties. The X-ray diffraction peaks are appears sharp and high intense shows the high crystalline form of grown CaTiO3. The diffractogram of grown CaTiO3 are indexed and analyzed using Powder-X software with JCPDS No. 42-0423 shows the only single phase of CaTiO3. No any other secondary phase or impurities are observed. Crystallite size of grown CaTiO3 are evaluated by Scherrer’s formula and Hall-Williamson plot using XRD. The structural properties such as strain, dislocation density, volume of unit cell and specific surface area (SSA) are evaluated and discussed in details.


Keywords:

Cite this article:
Mahesh Chaudhari, Umang Chaudhary. Synthesis and structural properties of CaTiO3 perovskite. Proceeding of ICAMAS-2025.87-92.


REFERENCE:
1.    A. Chilvery, S. Palwai, P. Guggilla, K. Wren, D. Edinburgh, Perovskite Materials: Recent Advancements and Challenges (2019), https://doi.org/10.5772/intechopen.88500 
2.    M. Pena, J. Fierro, Chem. Rev., 101 (2001) 1981-2018. https://doi.org/10.1021/cr980129f 
3.    A. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat., 4 (2000) 3-26. https://doi.org/10.1007/s100190000062 
4.    P. Docampo, T. Bein, Acc. Chem. Res., 49 (2016) 339-346. https://doi.org/10.1021/acs.accounts.5b00465   
5.    H. Megaw, Crystal structure of double oxides of the perovskite type, Proceedings of the Physical Society, 58 (1946) 133. https://doi.org/10.1088/0959-5309/58/2/301 
6.    M. Moreira, E. Paris, G. do Nascimento, V. Longo, J. Sambrano, V. Mastelaro, M. Bernardi,  J. Andrés, J. Varela, E. Longo,  Acta Materialia, 57 (2009) 5174-5185. https://doi.org/10.1016/j.actamat.2009.07.019 
7.    G. Kieslich, S. Sun, A. Cheetham, Chem. Sci., 6(6) (2015) 3430-3433. https://doi.org/10.1039/C5SC00961H 
8.    P. Parhi, T. Karthik, V. Manivannan, J. Alloys Compd., 465 (2008) 380-386. https://doi.org/10.1016/j.jallcom.2007.10.089 
9.    X. Trinh, N. Tran, H. Seo, H. Kim, Solar Energy, 206 (2020) 301-307. https://doi.org/10.1016/j.solener.2020.05.063 
10.    Q. Meng, Y. Chen, Y. Xiao, J. Sun, X. Zhang, C. Han, H. Gao, Y. Zhang, H. Yan, J. Mater. Sci.: Mater. Electron., 32 (2021) 12784-12792. https://doi.org/10.1007/s10854-020-03029-y 
11.    S. Sasaki, C. Prewitt, J. Bass, W. Schulze, Acta Cryst., 43 (1987) 1668-1674. https://doi.org/10.1107/S0108270187090620 
12.    H. Rooksby, Nature, 155 (1945) 484-484. https://doi.org/10.1038/155484a0 
13.    A. Stein, S. Keller, T. Mallouk, Science, 259 (1993) 1558-1564. https://doi.org/10.1126/science.259.5101.1558 
14.    S. Chaki, M. Chaudhary, M. Deshpande, Adv. Nat. Sci: Nanosci. Nanotechnol., 5 (2014) 045010. https://doi.org/10.1088/2043-6262/5/4/045010 
15.    N. Suthan Kissinger, M. Jayachandran, K. Permual, C. Sanjeevi Raja, Bull. Mater. Sci., 30 (2007) 547–551. https://doi.org/10.1007/s12034-007-0085-7 
16.    Mahesh Chaudhari, Sunil Chaki, S. M. Bharthaniya, A. M. Agarwal, Discov. Chem., 1 (2024). https://doi.org/10.1007/s44371-024-00053-3





Author/Editor Information

Dr. Sanjay Kango

Associate Professor

Dr. Poonam Sharma

Assistant Professor

Mr. Pawan Kumar

Assistant Professor

Dr, Ashok Kumar

Assistant Professor

Dr. Sunil Kumar Sharma

Assistant Professor

Dr. Nirmal Singh

Assistant Professor