Conference Proceeding

Author(s): Sushil Prasad, Ashok Kumar

Email(s): sushilprasad47@gmail.com , ashokedu19@gmail.com

Address: Sushil Prasad1, Ashok Kumar2
1Department of Mathematics and Statistics, Career Point University, Hamirpur (H.P).
2Department of Mathematics, Netaji Subhash Chander Bose Memorial Govt. College, Hamirpur (H.P).

Published In:   Conference Proceeding, Proceeding of ICAMAS-2025

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
A liquid known as ferrofluid magnetises when exposed to a magnetic field. Researchers interest in ferrofluids has recently increased because of their paramagnetic characteristics. Numerous applications have been conducted in the fields of mechanical engineering, material science, and electrical devices. The influence of Darcy-Forchheimer on stagnated point f lows of ferrofluids over stretching sheets under slip conditions is examined in the presence of viscous dissipation. Three types of ferropartices: magnetite (Fe3O4), Cobalt ferrite (CoFe2O4), and Mn−Zn ferrite (Mn−ZnFe2O4) are considered with water as conventional base fluids being together with nanofluid model formalized by Tiwari-Das model. Numerical solutions to the resulting ordinary differential equations are obtained by using a bvp-4c method.


Cite this article:
Sushil Prasad, Ashok Kumar. A study on MHD stagnated point flow of ferrofluids over stretching sheets with slip conditions utilizing Darcy-Forchheimer model. Proceeding of ICAMAS-2025.


References:
[1] Fischer E.G. Extrusion of Plastics, Wiley, New York, NY, USA, 1976.
[2] Crane L.J. Flow past a stretching plate. Journal of Applied Mathematics and Physics,
vol.21, no.4, 645-647,1970.
[3] Wang C.Y. Analysis of viscous flow due to a stretching sheet with surface slip and suction.
Nonlinear Analysis:Real World Applicatios, vol.10, no.1, pp.375-380,2009.
[4] Choi S. Enhancing thermal conductivity of fluids with nanoparticles. Develop. Appl.
Non-Newtonian Flows, vol. 231, no. 4, 99–105,1995.
[5] Hiemenz K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom
eingetauchten geraden Kreiszylinder, Dingler’ Poly-tech J., 326, pp. 321-324, 1911.
148
[6] Homann F. DerEinfluss grosser ZahigkeitbeiderStromung um den Zylin- derund um die
Kugel, Z AngewMathMech, Vol.16, 153-164, 1936.
[7] Mahapatra T.R. and Gupta A.S. Heat transfer in stagnation-point flow towards a stretching
sheet. Heat Mass Tran., Vol.38, 517-521, 2002.
[8] Tang C.Y. Stagnation flow towards a shrinking sheet. Int. J Non. Lin. Mech., Vol.43,
377-382, 2008.
[9] Ishak A., Lok Y.Y. and Pop I. Stagnation-point flow over a shrinking sheet in a micro
polar fluid. Chem. Engg. Commun., Vol.197, 1417-1427, 2010.
[10] Bhattacharyya K. and layek G.C. Efforts of suction/blowing on steady boundary layer
stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation.
Int. J. Heat Mass Trans., Vol.54, 302-307.
[11] Bachok N., Ishak A., and Pop I. On the stagnation-point flow towards a stretching
sheet with homogeneous-heterogeneous reaction effects. Comm. Nonlinear Sci. Number
Simulat., Vol.16,4296-4302, 2011.
[12] Lok Y.Y., Ishak A., and Pop I. MHD stagnation-point flow towards a shrinking sheet. Int.
J. Numer Meth Heat Fluid Flow, Vol.21, 61-72, 2011.
[13] Khan W. Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux.
[14] Kaiser R., Rosensweig R.E. Study of ferromagnetic liquid. Prepared under contract
no. NASw-1581 by AVCO Corporation Lowell, Washington DC: Mass for National
Aeronautics and Space Administration, 1969.
[15] Borglin S.E., Moridis G.J., and Oldenburg C.M. Experimental studies of magnetically
driven flow of ferrofluids in porous media. Berkeley, California: Earth Sciences Division
Lawrence Berkeley National Laboratory, University of California, 1998.
[16] Franklin T.A. Ferrofluid flow phenomena [Master thesis ], Massachusetts Institute of
Technology, 2003.
[17] Papadopoulos P.K., Vafeas P., and Hatzikonstantinon P.M. Ferrofluid pipe flow under the
influence of the magnetic field of a cylindrical coil. Phys. Fluids 2012;24:122002.
149
[18] Elshehabey H.M., Raizah Z., Oztop H.F., and Ahmed S.E. MHD natural convective
flow of FE3O4-H2O ferrofluids in an inclined partial open complex-wavy-walls
ringed enclosures using nonlinear Boussinesq approximation. Int. J. Mech. Sci.
2020;170:105352.
[19] Jalili B., Sadighi S., Jalili P., and GanjiD.D. Characteristics of ferrofluid flow over a
stertchig sheet with suction and injection. Case Stud. Ther. Engg., 2019;14:100470.
[20] Salehpour A., and Ashjaee M. Effect of different frequency functions on ferrofluid FHD
flow. J Magn Magn Mater, 2019;480:112-31.
[21] Hassan M., Fetecau C., Majeed A., and Zeeshan A. Effects of iron nanoparticles shape
on convective flow of ferrofluid under highly oscillating magnetic field over stretchable
rotating disk. J. Magn Magn Mater, 2018;465:531-9.
[22] Jusoh R., Nazar R., and Pop I. Magnetohyrodynamic rotating flow and heat transfer of
ferrofluid due to an exponentially permeable stretching/shrinking sheet. J Magn Magn
Mater 2018;465-365-74.
[23] Li Q., and Xuan Y. Experimental investigation on heat transfer characteristics of magnetic
fluid flow around a fine wire under the influence of an external magnetic field. Exp. Therm.
Fluid Sci., Vol.33, no.4, 591-596, 2009.
[24] Yamaguchi H., Zhang Z., Shuchi S., and Shimada K. Heat transfer characteristics of
magnetic fluid in a partitioned rectangular box. J. Magn. Magn. Mater, Vol.252, 203-205,
2002.
[25] Motozawa M., Chang J., Sawada T., and Kawaguchi Y. Effect of magnetic field on heat
transfer in rectangular duct flow of a magnetic fluid. Phys. Procedia, Vol.9, 190-193, 2010.
[26] Ganguly R., Sen S., and Puri I.K. Heat transfer augmentation using a magnetic fluid under
the influence of a line dipole. J. Magn. Magn. Mater, Vol.271, no.1, 63-73, 2004.
[27] Wu F., Wu C., Guo F., and Li D. acoustically controlled heat transfer of ferromagnetic
fluid. Int. J. Heat Mass Transf., Vol.44, no.23, 4427-4432, 2001.
[28] Zeeshan A., Majeed A., and Ellahi R. Effect of magnetic dipole on viscous ferrofluid past
a stretching surface with thermal radiation. J. of Molecular liquids,215, 549-554, 2016.
150
[29] Majeed A., Zeeshan A., Alamri S.Z., and Ellahi R. Heat transfer analysis in ferromagnetic
viscoelastic fluid flow over a stretching sheet with suction. Neural Computing and
Applications, 30(6), 1947-1955, 2018.
[30] Anderson H.I. MHD flow of viscoelastic past a astretching surface. Acta Mechanica,
95(1), 227-230, 1992.
[31] Malashetty M.S., Gaikwad S.N., and Swamy M. Int. J. Ther. Sci., 45, 897, 2006.
[32] Rehman A., Nadeem S., and Malik M.Y. J. of Power Tech., 93, 122,2013.
[33] Pollard R., and Traintham J.A. J. of Non-Newtonian Fluid Mech., 10,281, 1982.
[34] Xu H., Liao S.J., Pop I. J. of Non-Newtonian Fluid Mech., 139,31,2006.
[35] Hayat T., Mustafa M., Iqbal Z., and Alsaedi A. App. Math. Mech., 34, 167, 2013.
[36] Raju C.S.K., Sandeep N., Babu M.J., and Reddy J.V.R. Stagnation-point flow of a
ferrofluid towards a stretching sheet. Vol.5, 245-252, 2016.
[37] Tangthieng C., Finlayson B.A., Maulbetsch J., and Cader T. Heat transfer enhancement
in ferrofluids subjected to steady magnetic fields. J. Magn. Magn. Mater. Vol.201, no.13,
252-255, 1999.
[38] Stiles P.J., Lin F., and Blennerhassett P.J. Heat transfer through ferrofluids as a function
of the magnetic field strength. J. Colloid Interface Sci., Vol.155, no.1, 256-258,1993.
[39] Qasim M.,Khan Z.H., Khan W.A., and Shah I.A. MHD stagnation point ferrofluid flow
and heat transfer towards a stretching sheet. IEEE, 2013.
[40] Chiam T.C., Stagnation-point flow towards a stretching plate . J Phys. Soc. Jpn., Vol.63,
no. 6, 2443-2444, 1994.
[41] Hamad M. Analytical solution of natural convection flow of a nanofluid over a linearly
stretching sheet in the presence of magnetic field. Int. Commun. Heat Mass Transf.,
Vol.38, no.4, 487-492, 2011.
[42] Makinde O., Khan W, and Khan Z. Buoyancy effects on MHD stagnation point flow and
heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int.J.
Heat Mass Transf., Vol.62, 526-533, 2013.
151
[43] Kameswaran P.K., Narayana M., Sibanda P., and Murthy P.V.S.N. Hydromagnetic
nanofluid flow due to stretching or shrinking sheet with viscous dissipation and chemical
reaction effects. Int. J. Heat Mass Transf., Vol.55, 7587-95, 2012.
[44] Kuznetsov A.V., and Nield D.A. Natural convective boundary layer flow of a nanofluid
past a vertical plate. Int. J. Thermal Sci., Vol.49, 243-247, 2010.
[45] Jafar K.,Nazar R., Amin N. and Pop I. Boundary- layer flow and heat transfer of
nanofluids over a permeable moving surface in the presence of a co flowing fluid. Adv.
Mech. Engg., 521236, 2014.
[46] Ibrahim W., and Shankar B. MHD boundary layer flow and heat transfer flow of
a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip
boundary conditions. Comp. Fluids, 75, 1-10, 2013.
[47] Noghrehabadi A., Pourrajab R., and Ghalambaz M. Effect of partial slip boundary
condition on the flow and heat transfer of nanofluids past stretching sheet prescribed
constant wall temperature. Int. J. Therm. Sci., Vol.54, 253-261, 2012.
[48] Hussanan A., Salleh M.Z., and Khan I. Microstructure and inertial characteristics of a
magnetite ferrofluid over a stretching/shrinking sheet using effective thermal conductivity
model. J. Mol. Liq. Vol.255, 64-75, 2018.
[49] Tiwari R.K., and Dass M.K. Heat transfer augmentation in a two-sided lid-driven
differentially heated square cavity utilizing nanofluids. Int. J. of Heat and Mass Tranfer,
Vol.50, no.9-10, 2002-2018, 2007.
[50] Buongiorno J. Convective transport in nanofluids. J. of Heat Transfer, Vol.128, no.3,
240-250, 2006.
[51] Brinkman H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys.,
20, 571-581, 1952.
[52] Khanafer K., Vafai K., Lightstone M. Buoyancy-driven heat transfer enhancement in a
two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Trans., 46, 3639-3653,
2003.
152
[53] Nazar R., Amin N., Filip D., Pop I. Unsteady boundary layer flow in the region of the
stagnation point on a stretching sheet. Int. J. Eng, Sci., Vol. 42, 1241-1253, 2004.
[54] Pop I.,Ishak A., Nazar R. Mixed convection boundary layers in the stagnation-point flow
toward a stretching vertical sheet. Meccanica, Vol. 41, 509-518, 2006.
[55] Rosensweig R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn.
Mater., Vol. 252, 370-374, 2002.
[56] Oztop H., Abu-Nada E. Numerical study of natural convection in partially heated
rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow, Vol.29,
no.5,1326-1336, 2008.
[57] Weidenfeller B., Hofer M., Schillimg F. Thermal and electrical properties of magnetite
filled polymers. Composit. A. Appl. Sci. Manuf., Vol. 33, No.8, 1041-1053, 2002.




Author/Editor Information

Dr. Sanjay Kango

Associate Professor

Dr. Poonam Sharma

Assistant Professor

Mr. Pawan Kumar

Assistant Professor

Dr, Ashok Kumar

Assistant Professor

Dr. Sunil Kumar Sharma

Assistant Professor

Dr. Nirmal Singh

Assistant Professor