Conference Proceeding

Author(s): Sumixal Sood, Joginder Singh Dhiman

Email(s): sumixalsood@gmail.com , jsdhiman66@gmail.com

Address: Sumixal Sood1*, Joginder Singh Dhiman2
1Department of Mathematics, KDC Govt Degree College Jaisinghpur (Kangra) HP, India.
2Department of Mathematics, Himachal Pradesh University, Shimla, India.
*Corresponding author

Published In:   Conference Proceeding, Proceeding of ICAMAS-2025

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
In the present paper, the problem of ferroconvection in the presence of uniform vertical rotation with gravity modulation is considered to investigate the linear and weakly non-linear oscillatory stability. Two-dimensional convective roll instability is discussed with finite amplitude disturbances. For linear stability, as a first order problem, the expressions for Rayleigh numbers for stationary and oscillatory convection are derived and the effects of Coriolis force and magnetic parameters on the onset of ferromagnetic convection are studied, numerically. In weakly nonlinear oscillatory analysis, the second order and third order stability problems are discussed and the complex Ginzburg-Landau equation describing the amplitude of convection cell in rotating ferrofluid is derived and consequently the expression for Nusselt number representing the heat transfer rate is obtained. From the present analysis, we observed that the rotation has usual stabilizing effect on the linear stability in ferroconvection, however, the magnetic number (M_1) and the measure of nonlinearity of magnetization (M_3) both have destabilizing effect on the onset of linear instability. Also, we found that for non-linear convection, the heat transfer rate (the Nusselt number) increases with increasing values of Taylor number, magnetic number, the measure of nonlinearity of magnetization. The modulation frequency does not affect heat/mass transfer rate; though, the wavelength of oscillations decreases with increasing frequency.


Cite this article:
Sumixal Sood, Joginder Singh Dhiman. Linear and Weakly Non-linear Stability Analysis of Oscillatory Convection in Rotating Ferrofluid Layer with Gravity Modulation. Proceeding of ICAMAS-2025. 5-18.


REFERENCES:
1.    R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge (1985).
2.    S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, New York, Dover Publication (1961). 
3.    B.A. Finlayson, Convective instability of ferromagnetic fluids, J. Fluid Mech. 40 (1970) 753–767. http://dx.doi.org/10.1017/S0022112070000423
4.    J.S. Dhiman, N. Sharma, Thermal Instability of Hot Ferrofluid Layer with Temperature-Dependent Viscosity, Int. J. of Fluid Mech. Res. 45 (2018) 389-398. https://www.dl.begellhouse.com/journals/71cb29ca5b40f8f8,2eaea59a4b9d68ff,21919ebe05cb6f04.html 
5.    J.S. Dhiman, N. Sharma, Effect of temperature dependent viscosity on thermal convection in ferrofluid layer, Journal of Theoretical and Applied Mechanics Sofia 51 (2021) 3-21. http://www.jtambg.eu/papers/2021/JTAM2021_1_003-021.pdf 
6.    R.A. Curtis, Flows and wave propagations in ferrofluids, Physics of Fluids 14 (1971)  2096-2102. https://doi.org/10.1063/1.1693299
7.    D.P. Lalas, S. Carmi, Thermoconvective stability of ferrofluids, Physics of Fluids 14 (1971) 436-438. https://doi.org/10.1063/1.1693446
8.    M.I. Shliomis, Magnetic fluids, Soviet Phys. Uspekhi (Engl. Trans.) 17 (1974) 153–169.  http://dx.doi.org/10.1070/PU1974v017n02ABEH004332
9.    A. Sengupta, M.D. Gupta, Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis, Int. J. Eng. Sci. 17 (1979) 271 – 277. https://doi.org/10.1016/0020-7225(80)90090-9
10.    S.P. Bhattacharyya, M. Abbas, Convective instability of a rotating layer of a ferromagnetic fluid, Proc. Indian Acad. Sci. (Math. Sci.) 95 (1986) 23-30. https://doi.org/10.1007/BF02837244
11.    R. Sekar, A. Ramanathan, G. Vaidyanathan, Effect of rotation on ferro thermohaline convection saturating a porous medium, Ind. J. Eng. Mat. Sci. 5 (1998) 445-452. http://nopr.niscair.res.in/bitstream/123456789/29671/1/IJEMS%205%286%29%20445-452.pdf
12.    I. Shivkumara, J. Lee, C.E. Nanjundappa, M. Ravisha, Ferromagnetic convection in a rotating ferrofluid saturated porous layer, Transp. Porous. Med. 87 (2010) 251-273. https://doi.org/10.1007/s11242-010-9678-5 
13.    W.V.R. Malkus and G. Veronis, Finite amplitude cellular convection, J. Fluid Mech.  4 (1958) 225-260. https://doi.org/10.1017/S0022112058000410 
14.    S.S. Gupta, A.S. Gupta, Thermohaline Convection with Finite Amplitude in a Rotating Fluid, ZAMP 22 (1971) 906-914. https://doi.org/10.1007/BF01591818
15.    D. Laroze, P.D. Siddheshwar, H. Pleiner, Chaotic convection in a ferrofluid, Commun. Nonlinear Sci. Numer. Simulat. 18 (2013) 2436-2447. https://doi.org/10.1016/j.cnsns.2013.01.016
16.    P.G. Siddheshwar, O.P. Suthar, K. Chinnaswamy, Finiteamplitude ferroconvection and electroconvection in a rotating Fluid, SN Appl. Sci. 1 (2019) 1542-1553 https://doi.org/10.1007/s42452-019-1549-2
17.    A. Neha, P. G. Siddheshwar, S.N. Smita , S. Pranesh, Thermoconvective instability in a vertically oscillating horizontal ferrofluid layer with variable viscosity, Heat Transf.  49 (2020) 4543-4564. https://doi.org/10.1002/htj.218400 
18.    G. Venezian, Effect of modulation on the onset of thermal convection, J. Fluid Mech. 35 (1969) 243-254. https://doi.org/10.1017/S0022112069001091 
19.    C.S. Yih, C.H. Li, Instability of unsteady flows or configurations. part 2. convective instability, J. Fluid Mech. 54 (1972) 143-152. https://doi.org/10.1017/S0022112072000588 
20.    P.K. Bhatia, B.S. Bhadauria, Effect of modulation on thermal convection instability, Z. Naturforsch, 55a (2000) 957-966. https://doi.org/10.1515/zna-2000-11-1222 
21.    P.M. Gresho, R.L. Sani, The effects of gravity modulation on the stability of a heated fluid layer, J. Fluid Mech. 40 (1970) 783-806. https://doi.org/10.1017/S0022112070000447 
22.    B.S. Bhadauria , P. Kiran, Weak non-linear oscillatory convection in a viscoelastic fluid layer under gravity modulation, Int. J. Nonlin. Mech. 65 (2014) 133-140. https://doi.org/10.1016/j.ijnonlinmec.2014.05.002
23.    G.J. Lee, C.K. Choi, M.C. Kim, The onset of convection in viscoelastic fluid layers cooled from above, Proceedings of 1st International Conference Transport Phenomena in Processing Honolulu (1993) 774-784.
24.    W.M. Yang, Effect of modulation on radiation-induced instability, Int. J. Heat Mass Trans. 38 (1995) 47-53. https://doi.org/10.1016/0017-9310(94)00144-K 
25.    G. Veronis, Cellular convection with finite amplittude in a rotating fluid,J. Fluid Mech.  5 (1959) 401-435. https://doi.org/10.1017/S0022112059000283
26.    M.C. Kim, S.B. Lee, S. Kim, B.J. Chung, Thermal instability of viscoelastic fluids in porous media, Int. J. Heat Mass Tran. 46 (2003) 1565-1572. https://doi.org/10.1016/S0017-9310(03)00363-6
27.    P.G. Drazin, W.H. Reid, Hydrodynamic stability, Cambridge University Press, Cambridge (1981). 
28.    J.W Rauscher, R.E. Kelly, Effect of modulation on the onset of thermal convection in a rotating fluid, Int. J. Heat Mass Transf. 18 (1975) 1216-1217. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7670014840 

 





Author/Editor Information

Dr. Sanjay Kango

Associate Professor

Dr. Poonam Sharma

Assistant Professor

Mr. Pawan Kumar

Assistant Professor

Dr, Ashok Kumar

Assistant Professor

Dr. Sunil Kumar Sharma

Assistant Professor

Dr. Nirmal Singh

Assistant Professor