Conference Proceeding

Author(s): Harjinder Singh, Chitresh Kumari, Jitender Kumar, Virender Singh, Jyoti Prakash

Email(s): Email ID Not Available

Address: Harjinder Singh1, Chitresh Kumari2, Jitender Kumar3, Virender Singh4, Jyoti Prakash2
1Department of Mathematics, Kanwar Durga Chand Govt. Degree College, Jaisinghpur, Kangra-176095, Himachal Pradesh, India.
2Department of Mathematics and Statistics, Himachal Pradesh University, Summerhill, Shimla-171005, Himachal Pradesh, India.
3 Department of Mathematics, Baba Balak Nath College, Hamirpur-176039, Himachal Pradesh, India. Himachal Pradesh, India.
4Govt. Polytechnic for Women Rehan, Kangra-176022, Himachal Pradesh, India.

Published In:   Conference Proceeding, Proceeding of ICAMAS-2025

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
The problem of deriving upper limits for the complex growth rate of a disturbance in any hydrodynamic stability problem is important especially when any one of the bounding surfaces is rigid so that exact solution of the problem in closed form is not obtainable. In the present paper, such upper limits are derived for a horizontal dielectric Navier-Stokes-Voigt fluid layer in a sparsely distributed porous medium heated from below. It is proved mathematically that the complex growth rate ( and are the real and imaginary parts of respectively) of an arbitrary neutral or unstable oscillatory disturbance of growing amplitude in a dielectric Navier-Stokes-Voigt fluid layer in a sparsely distributed porous medium fluid layer heated from below, for the case of free boundaries, lies inside a semicircle in the right half of the plane, whose centre is at the origin and radius equals , where is the Prandtl number, is the ratio of heat capacities, is the Navier-Stokes-Voigt parameter and is electric Rayleigh number. The upper limits for the case of rigid boundaries are derived separately. Further, similar results are also derived for the same configuration when heated from above.


Cite this article:
Harjinder Singh, Chitresh Kumari, Jitender Kumar, Virender Singh, Jyoti Prakash. On the Complex Growth Rate of a Disturbance in a Dielectric Navier-Stokes-Voigt Fluid in Porous Medium. Proceeding of ICAMAS-2025. Proceeding of ICAMAS-2025. 55-63.


REFERENCES:
1.    Alchaar, S., Vasseur, P., and Bilgen, E. (1995). Effects of a magnetic field on the onset of convection in a porous medium. Heat and Mass Transfer, 30(4), 259-267.
2.    Badruddin, I. A., Khan, T. Y., and Baig, M. A. A. (2020). Heat transfer in porous media: a mini review. Materials today: proceedings, 24, 1318-1321.
3.    Banerjee, M. B., Katoch, D. C., Dube, G. S., and Banerjee, K. (1981). Bounds for growth rate of a perturbation in thermohaline convection. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 378(1773), 301-304
4.    Banjer, H., and Abdullah, A. A. (2012). Thermal instability in superposed porous and fluid layers in the presence of a magnetic field using the Brinkman model. Journal of Porous Media, 15(1).
5.    Bear, J. Dynamics of fluids in porous media. Courier Corporation. Dover Publications, New York (1988). 
6.    Bhadauria, B. S. (2007). Thermal modulation of Rayleigh-Benard convection in a sparsely packed porous medium. Journal of Porous Media, 10(2).
7.    Bhadauria, B. S. (2008). Combined effect of temperature modulation and magnetic field on the onset of convection in an electrically conducting-fluid-saturated porous medium. ASME J. Heat Transf., 130, 052601– 052609
8.    Bradley, R. (1978). Overstable electroconvective instabilities. The Quarterly Journal of Mechanics and Applied Mathematics, 31(3), 381-390.
9.    Castellanos, A., and Velarde, M. G. (1981). Electrohydrodynamic stability in the presence of a thermal gradient. The Physics of Fluids, 24(10), 1784-1786.
10.    Çelebı, A. O., Kalantarov, V. K., and Polat, M. (2009). Global attractors for 2D Navier–Stokes–Voight equations in an unbounded domain. Applicable Analysis, 88(3), 381-392.
11.    Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability, Oxford university Press, Dover publication, Inc., New York.
12.    Chiriţă, S., and Zampoli, V. (2015). On the forward and backward in time problems in the Kelvin–Voigt thermoviscoelastic materials. Mechanics Research Communications, 68, 25-30.
13.    Choudhury, K., and Sharma, S. (2024). Natural convection MHD mass transfer through an infinite vertical porous plate in the existence of radiation embedded in porous medium. Heat Transfer, 53(3), 1031-1049.
14.    Damázio, P. D., Manholi, P., and Silvestre, A. L. (2016). Lq-theory of the Kelvin–Voigt equations in bounded domains. Journal of Differential Equations, 260(11), 8242-8260.
15.    El-Sayed, M., Moussa, M. H. M., Hassan, A. A., and Hafez, N. M. (2014). Nonlinear electrohydromagnetic stability of conducting fluid flowing through porous medium down an inclined plane. Journal of Porous Media, 17(8).
16.    Horton, C. W., and Rogers Jr, F. T. (1945). Convection currents in a porous medium. Journal of Applied Physics, 16(6), 367-370.
17.    Jasim, L. (2021). Numerical investigation of the magnetic field effects on natural convection within a porous horizontal cylindrical annulus. Journal of Porous Media, 24(2).
18.    Kalantarov, V. K., and Titi, E. S. (2009). Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. Chinese Annals of Mathematics, Series B, 30(6), 697-714.
19.    Kumari, C., Kumar, J., and Prakash, J. (2024). The onset of electrothermoconvection in a viscoelastic dielectric fluid layer with internal heat source: Navier-Stokes-Voigt model. Technische Mechanik-European Journal of Engineering Mechanics, 44(4).
20.    Landau. L.D., Lifshitz, E.M. (1988). Electrodynamics of Continuous Media: Course of Theoretical Physics, Pergamon Press, London.
21.    Lapwood, E. (1948, October). Convection of a fluid in a porous medium. In Mathematical Proceedings of the Cambridge Philosophical Society (Vol. 44, No. 4, pp. 508-521). Cambridge University Press.
22.    Maekawa, T. (1992). Onset of natural convection under an electric field. Int. J. Heat Mass Transfer, 35(3), 613-621.
23.    Mourya, P. K., and Kumar, G. (2024). Onset of Darcy–Brinkman convection with thermal anisotropy in an inclined porous layer. Physics of Fluids, 36(10).
24.    Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer-Verlag, 2006.
25.    Nield, D. A., and Kuznetsov, A. V. (2013). An historical and topical note on convection in porous media. Journal of Heat Transfer, 135(6), 061201.
26.    Oskolkov, A. P. (1988). Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids. Trudy Matematicheskogo Instituta Imeni VA Steklova, 179, 126-164.
27.    Oskolkov, A. P. (1995). Nonlocal problems for the equations of motion of Kelvin-Voight fluids. Journal of Mathematical Sciences, 75, 2058-2078.
28.    Pellew A. and Southwell, R.V. (1940). On the maintained convective motion in a fluid heated from below, Proceedings of the Royal Society of London. Series A 176, 312-343.
29.    Prakash, J., and Gupta, S. (2013). On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer. Journal of magnetism and magnetic materials, 345, 201-207.
30.    Raghunatha, K. R., and Shivakumara, I. S. (2021). Double‐diffusive convection in a rotating viscoelastic fluid layer. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 101(4), e201900025.
31.    Ram, K., Prakash, J., Kumari, K., and Kumar, P. (2022). Upper bounds for the complex growth rate of a disturbance in ferrothermohaline convection. Studia Geotechnica et Mechanica, 44(2).
32.    Rudraiah, N., and Vortmeyer, D. (1978). Stability of finite-amplitude and overstable convection of a conducting fluid through fixed porous bed. Waerme und Stoffuebertragung, 11(4), 241-254.
33.    Rudresha, C., Balaji, C., Shree, V. V., and Maruthamanikandan, S. (2022). Effect of Electric Field Modulation on Electroconvection in a Dielectric Fluid-Saturated Porous Medium. Journal of Mines, Metals and Fuels, 35-41.
34.    Shankar, B. M., Kumar, J., and Shivakumara, I. S. (2017). Magnetohydrodynamic stability of natural convection in a vertical porous slab. Journal of Magnetism and Magnetic Materials, 421, 152-164.
35.    Sharma, S., Sunil, and Sharma, P. (2024). Stability analysis of thermosolutal convection in a rotating Navier–Stokes–Voigt fluid. Zeitschrift für Naturforschung A, 79(7), 689-702.
36.    Shivakumara, I. S., Nagashree, M. S., and Hemalatha, K. (2007). Electrothermoconvective instability in a heat generating dielectric fluid layer. International Communications in Heat and Mass Transfer, 34(9-10), 1041-1047.
37.    Shivakumara, I. S., Rudraiah, N., Lee, J., and Hemalatha, K. (2011). The onset of Darcy–Brinkman electroconvection in a dielectric fluid saturated porous layer. Transport in porous media, 90, 509-528.
38.    Skolkov, A. P. (1988). Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids. Trudy Matematicheskogo Instituta Imeni VA Steklova, 179, 126-164.
39.    Sukacheva, T. G., and Matveeva, O. P. (2010). On a homogeneous model of the non-compressible viscoelastic Kelvin–Voigt fluid of the non-zero order. J. Samara State Tech. Univ. Ser. Phys. Math. Sci, 5, 33-41.
40.    Sukacheva, T. G., and Kondyukov, A. O. (2014). On a class of Sobolev-type equations. Bull. South Ural State Tech. Univ. Ser. Math. Model. Program. 7(4), 5-21.
41.    Straughan, B. (2021). Thermosolutal convection with a Navier–Stokes–Voigt fluid. Applied Mathematics and Optimization, 84(3), 2587-2599.
42.    Straughan, B. (2023). Nonlinear stability for convection with temperature dependent viscosity in a Navier–Stokes–Voigt fluid. The European Physical Journal Plus, 138(5), 438.
43.    Straughan, B. (2025). Kelvin–Voigt Fluid Models in Double-Diffusive Porous Convection. Transport in Porous Media, 152(1), 11.
44.    Takashima, M. (1976). The effect of rotation on electrohydrodynamic instability. Canadian Journal of Physics, 54(3), 342-347.
45.    Turnbull, R. J. (1969). Effect of dielectrophoretic forces on the Bénard instability. The Physics of Fluids, 12(9), 1809-1815.
46.    Vafai, K. (2005). Handbook of Porous media. Second edition. Taylor and Francis, CRC Press, Boca Raton, Florida, USA
47.    Vadasz, P. (2019). Instability and convection in rotating porous media: a review. Fluids, 4(3), 147.





Author/Editor Information

Dr. Sanjay Kango

Associate Professor

Dr. Poonam Sharma

Assistant Professor

Mr. Pawan Kumar

Assistant Professor

Dr, Ashok Kumar

Assistant Professor

Dr. Sunil Kumar Sharma

Assistant Professor

Dr. Nirmal Singh

Assistant Professor