Conference Proceeding

Author(s): Meghana U, Vandana C D.

Email(s): vandana.cd@jainuniversity.ac.in

Address: Meghana U1, Vandana C D.2*
1Department of Life Sciences, School of Sciences, Jain (Deemed-to-be-University), Bangalore- 27, Karnataka, India
2Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be University), Bangalore-27, Karnataka, India
*Corresponding Author

Published In:   Conference Proceeding, Proceeding of ICONS-2024

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
The gut microbiome, comprising a wide range of bacteria, viruses, and fungi, plays a vital role in maintaining human health. Its composition is influenced by factors such as diet, environment, and genetics, which in turn affect the microbiomes functions in digestion, immune regulation, and metabolism. The core of these functions is the production of metabolites and signalling molecules that interact with protein receptors in the gut. These receptors, including G-protein-coupled receptors (GPCRs) and toll-like receptors (TLRs), regulate gut physiology, such as motility, secretion, and barrier integrity. The interactions between gut microbial metabolites, such as short-chain fatty acids and bile acids, and these receptors are crucial in modulating immune responses, nutrient absorption, and host metabolism. Understanding these complex interactions is essential for advancing genomic studies, as they reveal critical gene-environment interactions and epigenetic modifications mediated by the gut microbiota. By integrating microbiome and genomic data, we can explore microbiome-receptor interactions through genome-wide association studies and multi-omics approaches, making the way for personalized medicine. These insights have profound implications for health outcomes, particularly in chronic diseases like obesity, diabetes, and inflammatory bowel disease (IBD), as well as mental health disorders. Therapeutic interventions, including probiotics, prebiotics, and receptor-targeting drugs, hold promise for modulating these interactions. Future research directions focus on translating these findings into clinical practice, offering potential for targeted therapies and personalized interventions that improve health outcomes.


Cite this article:
Meghana U, Vandana C D.. Interactions between gut microbiome and gut protein receptors: Implications for genomic studies and health outcomes. Proceeding of ICONS-2024. 109-114.


REFERENCES:

1.      Agus, Allison, Jérémy Denizot, Jonathan Thévenot, Sébastien Massier, Pierre Sauvanet, Richard Bonnet, Elisabeth Billard, and Nicolas Barnich. 2016. “90 Western Diet Induces a Shift in Microbiota Composition Enhancing Susceptibility to Adherent-Invasive E. Coli Infection and Intestinal Inflammation.” Gastroenterology 150 (4): S23. https://doi.org/10.1016/s0016-5085(16)30201-3.

2.      Blekhman, Ran, Julia K. Goodrich, Katherine Huang, Qi Sun, Robert Bukowski, Jordana T. Bell, Timothy D. Spector, et al. 2015. “Host Genetic Variation Impacts Microbiome Composition across Human Body Sites.” Genome Biology 16 (1): 191. https://doi.org/10.1186/s13059-015-0759-1.

3.      Bonder, Marc Jan, Alexander Kurilshikov, Ettje F. Tigchelaar, Zlatan Mujagic, Floris Imhann, Arnau Vich Vila, Patrick Deelen, et al. 2016. “The Effect of Host Genetics on the Gut Microbiome.” Nature Genetics 48 (11): 1407–12. https://doi.org/10.1038/ng.3663.

4.      Brown, Andrew J., Susan M. Goldsworthy, Ashley A. Barnes, Michelle M. Eilert, Lili Tcheang, Dion Daniels, Alison I. Muir, et al. 2003. “The Orphan G Protein-Coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids.” The Journal of Biological Chemistry. 278 (13): 11312–19. https://doi.org/10.1074/jbc.M211609200.

5.      Duboc, Henri, Sylvie Rajca, Dominique Rainteau, David Benarous, Marie-Anne Maubert, Elodie Quervain, Ginette Thomas, et al. 2013. “Connecting Dysbiosis, Bile-Acid Dysmetabolism and Gut Inflammation in Inflammatory Bowel Diseases.” Gut 62 (4): 531–39. https://doi.org/10.1136/gutjnl-2012-302578.

6.      Fiorucci, Stefano, and Eleonora Distrutti. 2015. “Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.” Trends in Molecular Medicine 21 (11): 702–14. https://doi.org/10.1016/j.molmed.2015.09.001.

7.      Fritsche, Kevin L. 2015. “The Science of Fatty Acids and Inflammation.” Advances in Nutrition (Bethesda, Md.) 6 (3): 293S – 301S. https://doi.org/10.3945/an.114.006940.

8.      Gilbert, Jack A., Robert A. Quinn, Justine Debelius, Zhenjiang Z. Xu, James Morton, Neha Garg, Janet K. Jansson, Pieter C. Dorrestein, and Rob Knight. 2016. “Microbiome-Wide Association Studies Link Dynamic Microbial Consortia to Disease.” Nature 535 (7610): 94–103. https://doi.org/10.1038/nature18850.

9.      Goodrich, Julia K., Emily R. Davenport, Michelle Beaumont, Matthew A. Jackson, Rob Knight, Carole Ober, Tim D. Spector, Jordana T. Bell, Andrew G. Clark, and Ruth E. Ley. 2016. “Genetic Determinants of the Gut Microbiome in UK Twins.” Cell Host & Microbe 19 (5): 731–43. https://doi.org/10.1016/j.chom.2016.04.017.

10.   Kawai, Taro, and Shizuo Akira. 2010. “The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors.” Nature Immunology 11 (5): 373–84. https://doi.org/10.1038/ni.1863.

11.   Kimura, Ikuo, Kentaro Ozawa, Daisuke Inoue, Takeshi Imamura, Kumi Kimura, Takeshi Maeda, Kazuya Terasawa, et al. 2013. “The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43.” Nature Communications 4 (1): 1829. https://doi.org/10.1038/ncomms2852.

12.   Koh, Ara, Filipe De Vadder, Petia Kovatcheva-Datchary, and Fredrik Bäckhed. 2016. “From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.” Cell 165 (6): 1332–45. https://doi.org/10.1016/j.cell.2016.05.041.

13.   Lagier, Jean-Christophe, Perrine Hugon, Saber Khelaifia, Pierre-Edouard Fournier, Bernard La Scola, and Didier Raoult. 2015. “The Rebirth of Culture in Microbiology through the Example of Culturomics to Study Human Gut Microbiota.” Clinical Microbiology Reviews 28 (1): 237–64. https://doi.org/10.1128/cmr.00014-14.

14.   Ma, Bin, and Michael O. Hottiger. 2016. “Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation.” Frontiers in Immunology 7 (September):378. https://doi.org/10.3389/fimmu.2016.00378.

15.   Norman, Jason M., Scott A. Handley, and Herbert W. Virgin. 2014. “Kingdom-Agnostic Metagenomics and the Importance of Complete Characterization of Enteric Microbial Communities.”    Gastroenterology      146          (6):          1459–69. https://doi.org/10.1053/j.gastro.2014.02.001.

16.   Overton, Hilary A., Adam J. Babbs, Sheila M. Doel, Matthew C. T. Fyfe, Lisa S. Gardner, Graeme Griffin, Helen C. Jackson, et al. 2006. “Deorphanization of a G Protein-Coupled Receptor for Oleoylethanolamide and Its Use in the Discovery of Small-Molecule Hypophagic Agents.” Cell Metabolism 3 (3): 167–75. https://doi.org/10.1016/j.cmet.2006.02.004.

17.   Pekow, J., and S. B. Hanauer. 2017. “The Rise of Microbiota Therapies in Inflammatory Bowel Disease.” Current Opinion in Gastroenterology 33 (1): 20–26.

18.   Poul, Le. 2003. “Functional Expression of Human Receptors for Short-Chain Fatty Acids and Their Role in Glucagon-like Peptide-1 Secretion.” Diabetes 52 (5): 1172–79.

19.   Qin, Junjie, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristoffer Solvsten Burgdorf, Chaysavanh Manichanh, Trine Nielsen, et al. 2010. “A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing.” Nature 464 (7285): 59–65. https://doi.org/10.1038/nature08821.

20.   Ríos-Covián, D. 2016. “Short-Chain Fatty Acids and Their Link with Diet, Microbiota, and Host Health.” Frontiers in Microbiology 7.

21.   Ríos-Covián, David, Patricia Ruas-Madiedo, Abelardo Margolles, Miguel Gueimonde, Clara G. de Los Reyes-Gavilán, and Nuria Salazar. 2016. “Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health.” Frontiers in Microbiology 7 (February):185. https://doi.org/10.3389/fmicb.2016.00185.

22.   Rooks, M. G., and W. S. Garrett. 2016. “Gut Microbiota, Metabolites, and Host Immunity.” Nature Reviews Immunology 16 (6): 341–52.

23.   Schilderink, R., C. Verseijden, and W. J. De Jonge. 2013. “Dietary SCFAs and Immune Modulation by the Gut Microbiota: Ready for Therapeutic Interventions?” Frontiers in Immunology 4.

24.   Sender, Ron, Shai Fuchs, and Ron Milo. 2016. “Revised Estimates for the Number of Human and Bacteria Cells in the Body.” PLoS Biology 14 (8): e1002533. https://doi.org/10.1371/journal.pbio.1002533.

25.   Stilling, Roman M., Marcel van de Wouw, Gerard Clarke, Catherine Stanton, Timothy G. Dinan, and John F. Cryan. 2016. “The Neuropharmacology of Butyrate: The Bread and Butter of the Microbiota-Gut-Brain Axis?” Neurochemistry International 99 (October):110–32. https://doi.org/10.1016/j.neuint.2016.06.011.

26.   Tan, Jian, Craig McKenzie, Peter J. Vuillermin, Gera Goverse, Carola G. Vinuesa, Reina E. Mebius, Laurence Macia, and Charles R. Mackay. 2016. “Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways.” Cell Reports 15 (12): 2809–24. https://doi.org/10.1016/j.celrep.2016.05.047.

27.   Vaure, C., and Y. Liu. 2011. “A Comprehensive Review of Toll-like Receptor Signaling Pathways.” Molecular Immunology 48:1853–67.

28.   Wang, J. 2016. “Genome-Wide Association Analysis Identifies Variation in Vitamin D Receptor and Other Host Factors Influencing the Gut Microbiome.” Nature Genetics 48 (12): 1396–1406.

29.   Wang, Jun, Louise B. Thingholm, Jurgita Skiecevičienė, Philipp Rausch, Martin Kummen, Johannes R. Hov, Frauke Degenhardt, et al. 2016. “Genome-Wide Association Analysis Identifies Variation in Vitamin D Receptor and Other Host Factors Influencing the Gut Microbiota.” Nature Genetics 48 (11): 1396–1406. https://doi.org/10.1038/ng.3695.

30.   Wang, K., and Z. Chen. 2008. “PXR-Mediated Detoxification and Glucose Metabolism in the Gut.” Pharmacological Reviews 60 (4): 374–93.

31.   Yarovinsky, Felix, Dekai Zhang, John F. Andersen, Gerard L. Bannenberg, Charles N. Serhan, Matthew S. Hayden, Sara Hieny, et al. 2005. “TLR11 Activation of Dendritic Cells by a Protozoan Profilin-like Protein.” Science (New York, N.Y.) 308 (5728): 1626–29. https://doi.org/10.1126/science.1109893.

32.   Yatsunenko, Tanya, Federico E. Rey, Mark J. Manary, Indi Trehan, Maria Gloria Dominguez-Bello, Monica Contreras, Magda Magris, et al. 2012. “Human Gut Microbiome Viewed across Age and Geography.” Nature 486 (7402): 222–27. https://doi.org/10.1038/nature11053.

33.   Zeng, M. Y. 2012. “Microbiota-Induced Innate Immune Signaling through MyD88 Mediates Airway Hyperresponsiveness and Inflammation.” The Journal of Immunology 188 (7): 3220–28.

34.   Rumyantsev, K. A., Polyakova, V. V., Sorokina, I. V., Feoktistova, P. S., Khatkov, I. E., Bodunova, N. A., & Zhukova, L. G. (2024). The Gut Microbiota Impacts Gastrointestinal Cancers through Obesity, Diabetes, and Chronic Inflammation. Life, 14(10), 1219. https://doi.org/10.3390/life14101219

35.   Acevedo-Román, A., Pagán-Zayas, N., Velázquez-Rivera, L. I., Torres-Ventura, A. C., & Godoy-Vitorino, F. (2024). Insights into Gut Dysbiosis: Inflammatory Diseases, Obesity, and Restoration Approaches. International Journal of Molecular Sciences, 25(17), 9715. https://doi.org/10.3390/ijms25179715

36.   Kastl, A.J., Jr.; Terry, N.A.; Wu, G.D.; Albenberg, L.G. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell Mol. Gastroenterol. Hepatol. 2020, 9, 33–45.

 

 

 

 





Author/Editor Information

Dr. Vani. R

Professor

Dr. Apurva Kumar R. Joshi

Assistant Professor and Program Head