REFERENCES:
1.
Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.;
Wang, X.; Xing, B.; Zhao, Y. Multifunctional Mesoporous Silica Nanoparticles
for Cancer-Targeted and Controlled Drug Delivery. Adv. Funct. Mater. 2012, 22,
5144–5156.
2.
Tacar, O.; Sriamornsak, P.; Dass, C. R.
Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug
Delivery Systems. J. Pharm. Pharmacol. 2013). 65, 157–170.
3.
Rijcken, C.J.F.; Soga, O.; Hennink, W.E.; Nostrum,
C.F.V. Triggered Destabilisation of Polymeric Micelles and Vesicles by Changing
Polymers Polarity: An Attractive Tool for Drug Delivery, J. Control. Release 2007,
120, 131–148.
4.
Zhou, T.; Zhou, X.; Xing, D. Controlled
Release of Doxorubicin from Graphene Oxide based Charge-Reversal Nanocarrier. Biomaterials
2014, 35, 4185−4194.
5.
Fleige, E.; Quadir, M.A.; Haag, R.
Stimuli−Responsive Polymeric Nanocarriers for the Controlled Transport of Active
Compounds: Concepts and Applications, Adv. Drug Delivery Rev. 2012, 64,
866–884.
6.
Chen, C. K.; Wang, Q.; Jones, C. H.; Yu,
Y.; Zhang, H.; Law, W. C.; Lai, C. K.; Zeng, Q.; Prasad, P. N.; Pfeifer, B. A.;
Cheng, C. Synthesis of pH-Responsive Chitosan Nanocapsules for the Controlled Delivery
of Doxorubicin. Langmuir 2014, 30, 4111−4119.
7.
Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-Made Dual
pH-Sensitive Polymer-Doxorubicin Nanoparticles for Efficient Anticancer Drug
Delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563.
8.
Xu, M.; Qian, J.; Suo, A.; Wang, H.; Yong,
X.; Liu, X.; Liu, R. Reduction/pH Dual-Sensitive Pegylated Hyaluronan
Nanoparticles for Targeted Doxorubicin Delivery. Carbohydr. Polym. 2013, 98,
181– 188.
9.
Rodríguez-Ruiz, I.; Delgado-López, J. M.;
Durán-Olivencia, M. A.; Iafisco, M.; Tampieri, A.; Colangelo, D.; Prat, M.;
Gómez-Morales, J. pH-Responsive Delivery of Doxorubicin from Citrate−Apatite
Nanocrystals with Tailored Carbonate Content. Langmuir 2013, 29, 8213−8221.
10.
Lee, K. Y. J.; Wang, Y.; Nie, S. In
Vitro Study of a pH-Sensitive Multifunctional Doxorubicin–Gold
Nanoparticle System: Therapeutic Effect and Surface Enhanced Raman Scattering. RSC
Adv. 2015, 5, 65651−65659
11.
Zhao, X.; Liu, L.; Li, X.; Zeng, J.; Jia, X.;
Liu, P. Biocompatible Graphene Oxide Nanoparticle-Based Drug Delivery Platform
for Tumor Microenvironment-Responsive Triggered Release of Doxorubicin. Langmuir
2014, 30, 10419−10429.
12.
Elbialy, N. S.; Fathy, M. M.; Khalil, W. M.
Doxorubicin Loaded Magnetic Gold Nanoparticles for in vivo Targeted
Drug Delivery. Int. J. Pharm. 2015, 490, 190−199.
13.
Manchun, S.; Cheewatanakornkool, K.; Dass,
C. R.; Sriamornsak, P. Novel pH-Responsive Dextrin Nanogels for Doxorubicin
Delivery to Cancer Cells with Reduced Cytotoxicity to Cardiomyocytes and Stem
Cells. Carbohydr. Polym. 2014, 114, 78–86.
14.
Ding, C.; Gu, J.; Qu, X.; Yang, Z.
Preparation of Multifunctional Drug Carrier for Tumor-Specific Uptake and
Enhanced Intracellular Delivery Through the Conjugation of Weak Acid Labile
Linker. Bioconjug. Chem. 2009, 20, 1163−1170.
15.
Zhao, Z.; Huang, D.; Yin, Z.; Chi, X.;
Wang, X.; Gao, J. Magnetite Nanoparticles as Smart Carriers to Manipulate the
Cytotoxicity of Anticancer Drugs: Magnetic Control and pH-Responsive Release. J.
Mater. Chem. 2012, 22, 15717–15725.
16.
Basuki, J. S.; Duong, H. T. T.; Macmillan,
A.; Erlich, R. B.; Esser, L.; Akerfeldt, M. C.; Whan, R. M.; Kavallaris, M.;
Boyer, C.; Davis, T. P. Using Fluorescence Lifetime Imaging Microscopy to
Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release. ACS
Nano 2013, 7, 10175–10189.
17.
Kumari, S.; Chauhan, G. S.; Ahn, J. -H.;
Reddy, N. S. Bio-waste Derived Dialdehyde Cellulose Ethers as Supports for
α-Chymotrypsin Immobilization. Int. J. Biol. Macromol. 2016, 85, 227–237.
18.
Kumari, S.; Chauhan, G. S. New Cellulose −
Lysine Schiff-Base-Based Sensor − Adsorbent for Mercury Ions. ACS Appl. Mater.
Interfaces 2014, 6, 5908−5917.
19.
Kumari, S.; Mankotia, D.; Chauhan, G.
S. Crosslinked Cellulose Dialdehyde for
Congo Red Removal from its Aqueous Solutions. J. Environ. Chem. Eng. 2016, 4,
1126–1136.
20.
Kumari, S.; Ram, B.; Kumar, D.; Ranote,
R.; Chauhan, G. S. Nanoparticles of Oxidized-Cellulose Synthesized by Green Method,
Mater. Sci. Energ. Technol., 2018, 1, 22-28.
21.
Kumari, S.; Chauhan, G. S. Immobilization
of Lysozyme onto Dialdehyde Cellulose Ethers, Trends Carbohydr. Res. 2016, 8(3),
38–46.
22.
Zhu, L. H.; Kumar, V.; Banker, G. S.,
Examination of Oxidized Cellulose as a Macromolecular Prodrug Carrier:
Preparation and Characterization of an Oxidized Cellulose-Phenylpropanolamine
Conjugate. Int. J. Pharm. 2001, 223, 35−47.
23.
Zimnitsky, D. S.; Yurkshtovich, T. L.;
Bychkovsky, P. M. Adsorption of Zwitter ionic Drugs on Oxidized Cellulose from
Aqueous Solutions. React. Funct. Polym. 2006, 66, 519–525.
24.
Volkert, B.; Wolf, B.; Fischer, S.; Li,
N.; Lou, C. Application of Modified Bead Cellulose as a Carrier of Active
Ingredients. Macromol. Symp. 2009, 280, 130–135.
25.
Akhlaghi, S. P.; Tiong, D.; Berry, R. M.;
Tam, K. C. Comparative Release Studies of Two Cationic Model Drugs from
Different Cellulose Nanocrystal Derivatives. Eur. J. Pharm. Biopharm. 2014, 88,
207–215.
26.
Liu, J.; Zhang, Y.; Wang, C.; Xu, R.;
Chen, Z.; Gu, N. Magnetically Sensitive Alginate-Templated Polyelectrolyte
Multilayer Microcapsules for Controlled Release of Doxorubicin. J. Phys. Chem. C 2010, 114, 7673–7679.
27.
Wang, Y.; Yang, S. T.; Wang, Y.; Liu, Y.;
Wang, H. Adsorption and Desorption of Doxorubicin on Oxidized Carbon Nanotubes.
Colloids Surf. B 2012, 97, 62–69.
28.
Shalviri,
A.; Chan, H. K.; Raval, G.; Abdekhodaie, M. J.; Liu, Q.; Heerklotz, H.; Wu, X.
Y. Design of pH-Responsive Nanoparticles of Terpolymer of Poly(methacrylic
acid), Polysorbate 80 and Starch for Delivery of Doxorubicin. Colloids Surf. B 2013,
101, 405–413.
29.
Mhlanga, N.; Ray, S. S. Kinetic Models for
the Release of the Anticancer Drug Doxorubicinfrom Biodegradable
Polylactide/Metal Oxide-based Hybrids. Int. J. Biol. Macromol. 2015, 72, 1301–1307.
30.
Higuchi,
T. Mechanism of Sustained-Action Medication: Theoretical Analysis of Rate of
Release of Solid Drugs Dispersed in Solid Matrices. J. Pharma. Sci. 1963, 52,
1145–1149.
31.
Korsmeyer, R. W.; Peppas, N. A.
Macromolecular and Modeling Aspects of Swelling-Controlled Systems, in:
Mansdorf, S. Z., Roseman, T. J. (Eds.), Marcel Dekker Inc., New York, 1983, 77–90.