Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Sapana Kumari

Email(s): naddasapana@gmail.com

Address: Dr. Sapana Kumari
Department of Chemistry, NSCBM Govt. Degree College Hamirpur, H.P., India-177005
*Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
The foremost requisite for chemotherapy is site specific drug delivery so as to avoid various associated side effects. To achieve this, stimuli-responsiveness of the support material is of great interest to selectively release the loaded drug to tumor cells. Therefore, in the present study, cellulose was modified by oxidization with sodium periodate (NaIO4) to dialdehyde cellulose (DAC). The synthesized DAC was applied as support material for doxorubicin (Dox), as model anticancer drug. The drug was loaded on this support material via pH-responsive linkages between functional groups of Dox and DAC. The release behaviour of Dox was studied in the different pH medium. Dox release was observed to be maximum at pH 5.0 and pH 6.8 i.e., endosomal and extracellular pH, respectively in tumor tissue, and minimum at physiological pH 7.4 of normal tissues. Various mathematical models were applied to elucidate the release mechanism of Dox from the loaded DAC and showed non-Fickian diffusion mechanism. The results suggested that this pH-responsive DAC support material is effective and promising Dox-delivery carriers for cancer treatment and capable of reducing side-effects of this anticancer drug to the normal cells.


Cite this article:
Sapana Kumari. Oxidized-Cellulose for pH-triggered in vitro Doxorubicin Release. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:109-116.


REFERENCES:

1.              Zhang, Q.; Liu, F.; Nguyen, K. T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Multifunctional Mesoporous Silica Nanoparticles for Cancer-Targeted and Controlled Drug Delivery. Adv. Funct. Mater. 2012, 22, 5144–5156.

2.              Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. J. Pharm. Pharmacol. 2013). 65, 157–170.

3.              Rijcken, C.J.F.; Soga, O.; Hennink, W.E.; Nostrum, C.F.V. Triggered Destabilisation of Polymeric Micelles and Vesicles by Changing Polymers Polarity: An Attractive Tool for Drug Delivery, J. Control. Release 2007, 120, 131–148.

4.              Zhou, T.; Zhou, X.; Xing, D. Controlled Release of Doxorubicin from Graphene Oxide based Charge-Reversal Nanocarrier. Biomaterials 2014, 35, 4185−4194.

5.              Fleige, E.; Quadir, M.A.; Haag, R. Stimuli−Responsive Polymeric Nanocarriers for the Controlled Transport of Active Compounds: Concepts and Applications, Adv. Drug Delivery Rev. 2012, 64, 866–884.

6.              Chen, C. K.; Wang, Q.; Jones, C. H.; Yu, Y.; Zhang, H.; Law, W. C.; Lai, C. K.; Zeng, Q.; Prasad, P. N.; Pfeifer, B. A.; Cheng, C. Synthesis of pH-Responsive Chitosan Nanocapsules for the Controlled Delivery of Doxorubicin. Langmuir 2014, 30, 4111−4119.

7.              Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-Made Dual pH-Sensitive Polymer-Doxorubicin Nanoparticles for Efficient Anticancer Drug Delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563.

8.              Xu, M.; Qian, J.; Suo, A.; Wang, H.; Yong, X.; Liu, X.; Liu, R. Reduction/pH Dual-Sensitive Pegylated Hyaluronan Nanoparticles for Targeted Doxorubicin Delivery. Carbohydr. Polym. 2013, 98, 181– 188.

9.              Rodríguez-Ruiz, I.; Delgado-López, J. M.; Durán-Olivencia, M. A.; Iafisco, M.; Tampieri, A.; Colangelo, D.; Prat, M.; Gómez-Morales, J. pH-Responsive Delivery of Doxorubicin from Citrate−Apatite Nanocrystals with Tailored Carbonate Content. Langmuir 2013, 29, 8213−8221.

10.           Lee, K. Y. J.; Wang, Y.; Nie, S. In Vitro Study of a pH-Sensitive Multifunctional Doxorubicin–Gold Nanoparticle System: Therapeutic Effect and Surface Enhanced Raman Scattering. RSC Adv. 2015, 5, 65651−65659

11.            Zhao, X.; Liu, L.; Li, X.; Zeng, J.; Jia, X.; Liu, P. Biocompatible Graphene Oxide Nanoparticle-Based Drug Delivery Platform for Tumor Microenvironment-Responsive Triggered Release of Doxorubicin. Langmuir 2014, 30, 10419−10429.

12.           Elbialy, N. S.; Fathy, M. M.; Khalil, W. M. Doxorubicin Loaded Magnetic Gold Nanoparticles for in vivo Targeted Drug Delivery. Int. J. Pharm.  2015, 490, 190199.

13.           Manchun, S.; Cheewatanakornkool, K.; Dass, C. R.; Sriamornsak, P. Novel pH-Responsive Dextrin Nanogels for Doxorubicin Delivery to Cancer Cells with Reduced Cytotoxicity to Cardiomyocytes and Stem Cells. Carbohydr. Polym. 2014, 114, 78–86.

14.           Ding, C.; Gu, J.; Qu, X.; Yang, Z. Preparation of Multifunctional Drug Carrier for Tumor-Specific Uptake and Enhanced Intracellular Delivery Through the Conjugation of Weak Acid Labile Linker. Bioconjug. Chem. 2009, 20, 1163−1170.

15.           Zhao, Z.; Huang, D.; Yin, Z.; Chi, X.; Wang, X.; Gao, J. Magnetite Nanoparticles as Smart Carriers to Manipulate the Cytotoxicity of Anticancer Drugs: Magnetic Control and pH-Responsive Release. J. Mater. Chem. 2012, 22, 15717–15725.

16.           Basuki, J. S.; Duong, H. T. T.; Macmillan, A.; Erlich, R. B.; Esser, L.; Akerfeldt, M. C.; Whan, R. M.; Kavallaris, M.; Boyer, C.; Davis, T. P. Using Fluorescence Lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release. ACS Nano 2013, 7, 10175–10189.

17.           Kumari, S.; Chauhan, G. S.; Ahn, J. -H.; Reddy, N. S. Bio-waste Derived Dialdehyde Cellulose Ethers as Supports for α-Chymotrypsin Immobilization. Int. J. Biol. Macromol. 2016, 85, 227–237.

18.           Kumari, S.; Chauhan, G. S. New Cellulose − Lysine Schiff-Base-Based Sensor − Adsorbent for Mercury Ions. ACS Appl. Mater. Interfaces 2014, 6, 5908−5917.

19.           Kumari, S.; Mankotia, D.; Chauhan, G. S.  Crosslinked Cellulose Dialdehyde for Congo Red Removal from its Aqueous Solutions. J. Environ. Chem. Eng. 2016, 4, 1126–1136.

20.           Kumari, S.; Ram, B.; Kumar, D.; Ranote, R.; Chauhan, G. S. Nanoparticles of Oxidized-Cellulose Synthesized by Green Method, Mater. Sci. Energ. Technol., 2018, 1, 22-28.

21.           Kumari, S.; Chauhan, G. S. Immobilization of Lysozyme onto Dialdehyde Cellulose Ethers, Trends Carbohydr. Res. 2016, 8(3), 38–46.

22.           Zhu, L. H.; Kumar, V.; Banker, G. S., Examination of Oxidized Cellulose as a Macromolecular Prodrug Carrier: Preparation and Characterization of an Oxidized Cellulose-Phenylpropanolamine Conjugate. Int. J. Pharm. 2001, 223, 35−47.

23.           Zimnitsky, D. S.; Yurkshtovich, T. L.; Bychkovsky, P. M. Adsorption of Zwitter ionic Drugs on Oxidized Cellulose from Aqueous Solutions. React. Funct. Polym. 2006, 66, 519–525.

24.           Volkert, B.; Wolf, B.; Fischer, S.; Li, N.; Lou, C. Application of Modified Bead Cellulose as a Carrier of Active Ingredients. Macromol. Symp. 2009, 280, 130–135.

25.           Akhlaghi, S. P.; Tiong, D.; Berry, R. M.; Tam, K. C. Comparative Release Studies of Two Cationic Model Drugs from Different Cellulose Nanocrystal Derivatives. Eur. J. Pharm. Biopharm. 2014, 88, 207–215.

26.           Liu, J.; Zhang, Y.; Wang, C.; Xu, R.; Chen, Z.; Gu, N. Magnetically Sensitive Alginate-Templated Polyelectrolyte Multilayer Microcapsules for Controlled Release of Doxorubicin. J. Phys. Chem. C 2010, 114, 7673–7679.

27.           Wang, Y.; Yang, S. T.; Wang, Y.; Liu, Y.; Wang, H. Adsorption and Desorption of Doxorubicin on Oxidized Carbon Nanotubes. Colloids Surf. B 2012, 97, 62–69.

28.           Shalviri, A.; Chan, H. K.; Raval, G.; Abdekhodaie, M. J.; Liu, Q.; Heerklotz, H.; Wu, X. Y. Design of pH-Responsive Nanoparticles of Terpolymer of Poly(methacrylic acid), Polysorbate 80 and Starch for Delivery of Doxorubicin. Colloids Surf. B 2013, 101, 405–413.

29.           Mhlanga, N.; Ray, S. S. Kinetic Models for the Release of the Anticancer Drug Doxorubicinfrom Biodegradable Polylactide/Metal Oxide-based Hybrids. Int. J. Biol. Macromol. 2015, 72, 1301–1307.

30.           Higuchi, T. Mechanism of Sustained-Action Medication: Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. J. Pharma. Sci. 1963, 52, 1145–1149.

31.           Korsmeyer, R. W.; Peppas, N. A. Macromolecular and Modeling Aspects of Swelling-Controlled Systems, in: Mansdorf, S. Z., Roseman, T. J. (Eds.), Marcel Dekker Inc., New York, 1983, 77–90.

 

 

 





Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA