Author(s):
Rajeev Kumar, Aarti Manglesh, Ashish Kumar
Email(s):
rajeevkumar2012math@gmail.com
Address:
Rajeev Kumar1*, Aarti Manglesh2, Ashish Kumar3
1Assistant Professor, Himachal Pradesh University Department of Evening Studies, The Mall, Shimla-1.
2Assistant Professor, CDOE, Himachal Pradesh University, Summer Hill, Shimla-5.
3 Research Scholar, Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla-5.
*Corresponding author
Published In:
Conference Proceeding, Proceeding of ICAMAS-2025
Year of Publication:
July, 2025
Online since:
July 11, 2025
DOI:
HTML paper not available.
REFERENCES:
[1] Alex, S. M., Patil, P. R., and Venkatakrishnan, K. S. (2001). Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient. Fluid Dynamics Research, 29(1), 1-6. https://doi.org/10.1016/S0169-5983(01)00016-8
[2] Arnone, G., Capone, F., Iovanna, F., and Massa, G. (2024). Variable gravity effects on penetrative porous convection. International Journal of Non-Linear Mechanics, 158, 104579. https://doi.org/10.1016/j.ijnonlinmec.2023.104579
[3] Banerjee, M. B., Gupta, J. R., Shandil, R. G., Sood, S. K., Banerjee, B. and Banerjee, K., (1985), On the principle of the exchange of stabilities in the magnetohydrodynamic simple Bénard problem, Journal of Mathematical Analysis and Applications, 108 (1), 216-222. https://doi.org/10.1016/0022-247X(85)90018-6
[4] Bénard, H. (1900). Les tourbillons cellulaires dans une nappe liquide. Revue Gen. Sci. Pure Appl., 11, 1261-1271.
[5] Chand, R., Rana, G. C., and Kumar, S. (2013). Variable gravity effects on thermal instability of nanofluid in anisotropic porous medium. International Journal of Applied Mechanics and Engineering, 18(3), 631-642. DOI: 10.2478/ijame-2013-0038
[6] Chandrasekhar, S. (2013). Hydrodynamic and hydromagnetic stability. Courier Corporation.
[7] Clever, R., Schubert, G., and Busse, F. H. (1993). Two-dimensional oscillatory convection in a gravitationally modulated fluid layer. Journal of Fluid Mechanics, 253, 663-680. https://doi.org/10.1017/S0022112093001946
[8] Francis, R., Narayana, M., and Siddheshwar, P. G. (2023). Gravity-modulated Rayleigh–Bénard convection in a Newtonian liquid bounded by rigid–free boundaries: a comparative study with other boundary conditions. Journal of Engineering Mathematics, 139(1), 5. https://doi.org/10.1007/s10665-023-10260-z
[9] Getling, A. V. (2012). Rayleigh-benard convection. Scholarpedia, 7(7), 7702.
[10] Gresho, P. M., and Sani, R. L. (1970). The effects of gravity modulation on the stability of a heated fluid layer. Journal of Fluid Mechanics, 40(4), 783-806. https://doi.org/10.1017/S0022112070000447
[11] Gupta, J. R., and Kaushal, M. B. (1988). Rotatory hydromagnetic double-diffusive convection with viscosity variations. Journal of Mathematical and Physical Sciences, 22(3), 301-320.
[12] Gupta, J. R., Sood, S. K., and Bhardwaj, U. D. (1984). On Rayleigh-Bénard convection with rotation and magnetic field. Zeitschrift für angewandte Mathematik und Physik ZAMP, 35, 252-256.
[13] Han, D., Hernandez, M. and Wang, Q. (2019). Dynamic bifurcation and transition in the Rayleigh-Benard convection with internal heating and varying gravity, Communication in Mathematical Sciences, 17(1), 175-192. https://doi.org/10.4310/cms.2019.v17.n1.a7
[14] Kumar, R., Manglesh, A. and Kumar, A. (2024). A Study of the Effect of Variable Gravity, Magnetic Field Dependent Viscosity and Uniform Rotation on the Stability of Ferromagnetic Convection for Free-Free Boundaries, Journal of Rajasthan Academy of Physical Sciences, 23 (3and4), 233-255.
[15] Kumar, R., Manglesh, A. and Kumar, A. (2024). Analysis of the effect of variable gravity on stationary convection in Rayleigh-Bénard convection for free-free, rigid-rigid and rigid-free boundary conditions, Int. J. Stat. Appl. Math., 9(6), 08-16. DOI: 10.22271/maths.2024.v9.i6a.1879
[16] Pant, S. and Algehyne, E. A. (2022). Convection in a Ferromagnetic Fluid Layer Influenced by Changeable Gravity and Viscosity, Mathematics, 10, 1737-1757. https://doi.org/10.3390/math10101737
[17] Pellew, A., and Southwell, R. V. (1940). On maintained convective motion in a fluid heated from below. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 176(966), 312-343.
[18] Pradhan, G. K., and Samal, P. C. (1987). Thermal stability of a fluid layer under variable body forces. Journal of mathematical analysis and applications, 122(2), 487-495. https://doi.org/10.1016/0022-247X(87)90280-0
[19] Pradhan, G. K., Samal, P. C., and Tripathy, U. K. (1989). Thermal stability of a fluid layer in a variable gravitational field. Indian J. pure appl. Math, 20(7), 736-745.
[20] Prakash, J., Bala, R., and Vaid, K. (2014). On the principle of the exchange of stabilities in rotatory triply diffusive convection. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84(3), 433-439.
[21] Rayleigh, L. (1916). LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(192), 529-546. https://doi.org/10.1080/14786441608635602
[22] Saunders, B. V., Murray, B. T., McFadden, G. B., Coriell, S. R., and Wheeler, A. A. (1992). The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid. Physics of Fluids A: Fluid Dynamics, 4(6), 1176-1189. https://doi.org/10.1063/1.858236
[23] Shekhar, S., Ragoju, R., and Yadav, D. (2022). The effect of variable gravity on rotating Rayleigh–Bénard convection in a sparsely packed porous layer. Heat Transfer, 51(5), 4187-4204. https://doi.org/10.1002/htj.22495
[24] Singh, J., and Singh, S. S. (2013). Instability in temperature modulated rotating Rayleigh–Benard convection. Fluid Dynamics Research, 46(1), 015504. DOI: 10.1088/0169-5983/46/1/015504
[25] Straughan, B. (1989). Convection in a variable gravity field. Journal of mathematical analysis and applications, 140(2), 467-475. https://doi.org/10.1016/0022-247X(89)90078-4
[26] Straughan, B. (2013). The energy method, stability, and nonlinear convection (Vol. 91). Springer Science and Business Media.
[27] Suma, S. P., Gangadharaiah, Y. H., and Indira, R. (2011). Effect of throughflow and variable gravity field on thermal convection in a porous layer. Int. J. Eng. Sci. Tech, 3, 7657-7668.
[28] Tagare, S. G., Babu, A. B., and Rameshwar, Y. (2008). Rayleigh–Benard convection in rotating fluids. International journal of heat and mass transfer, 51(5-6), 1168-1178.Yadav, D. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.052
[29] Yadav, D. (2020). The onset of Darcy‐Brinkman convection in a porous medium layer with vertical throughflow and variable gravity field effects. Heat Transfer, 49(5), 3161-3173. https://doi.org/10.1002/htj.21767