Conference Proceeding

Author(s): Rajeev Kumar, Aarti Manglesh, Ashish Kumar

Email(s): rajeevkumar2012math@gmail.com

Address: Rajeev Kumar1*, Aarti Manglesh2, Ashish Kumar3
1Assistant Professor, Himachal Pradesh University Department of Evening Studies, The Mall, Shimla-1.
2Assistant Professor, CDOE, Himachal Pradesh University, Summer Hill, Shimla-5.
3 Research Scholar, Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla-5.
*Corresponding author

Published In:   Conference Proceeding, Proceeding of ICAMAS-2025

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
This study investigates the effects of varying gravity, uniform rotation, and different boundary conditions (free-free, rigid-rigid, and rigid-free) on oscillatory Rayleigh-Bénard Convection. Six gravitational field variations are analyzed and Rayleigh numbers are calculated using the Galerkin Method. Critical wave numbers and Rayleigh numbers for each boundary condition, along with visual representations of the results, are computed using MATLAB R2024b software. The results show that gravity stabilizes the system for the first three cases of gravitational field variation and destabilizes it for the last three, depending on the boundary conditions. The system is most stable in case (i) and least stable in case (v) of the gravitational field variations. For lower values of T, the system is most stable with free-free boundaries and least stable with rigid-free boundaries. For higher values of T, it is most stable with free-free boundaries and least stable with rigid-rigid boundaries. In all cases of gravitational field variation, uniform rotation delays the onset of oscillatory convection.


Cite this article:
Rajeev Kumar, Aarti Manglesh, Ashish Kumar. The Onset of Oscillatory Convection in Rotatory Rayleigh-Bénard Convection Under the Influence of Varying Gravity, Analyzed using the Galerkin Method. Proceeding of ICAMAS-2025. 44-54.


REFERENCES:
[1]    Alex, S. M., Patil, P. R., and Venkatakrishnan, K. S. (2001). Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient. Fluid Dynamics Research, 29(1), 1-6. https://doi.org/10.1016/S0169-5983(01)00016-8
[2]    Arnone, G., Capone, F., Iovanna, F., and Massa, G. (2024). Variable gravity effects on penetrative porous convection. International Journal of Non-Linear Mechanics, 158, 104579. https://doi.org/10.1016/j.ijnonlinmec.2023.104579
[3]    Banerjee, M. B., Gupta, J. R., Shandil, R. G., Sood, S. K., Banerjee, B. and Banerjee, K., (1985), On the principle of the exchange of stabilities in the magnetohydrodynamic simple Bénard problem, Journal of Mathematical Analysis and Applications, 108 (1), 216-222. https://doi.org/10.1016/0022-247X(85)90018-6
[4]    Bénard, H. (1900). Les tourbillons cellulaires dans une nappe liquide. Revue Gen. Sci. Pure Appl., 11, 1261-1271.
[5]    Chand, R., Rana, G. C., and Kumar, S. (2013). Variable gravity effects on thermal instability of nanofluid in anisotropic porous medium. International Journal of Applied Mechanics and Engineering, 18(3), 631-642. DOI: 10.2478/ijame-2013-0038
[6]    Chandrasekhar, S. (2013). Hydrodynamic and hydromagnetic stability. Courier Corporation.
[7]    Clever, R., Schubert, G., and Busse, F. H. (1993). Two-dimensional oscillatory convection in a gravitationally modulated fluid layer. Journal of Fluid Mechanics, 253, 663-680. https://doi.org/10.1017/S0022112093001946
[8]    Francis, R., Narayana, M., and Siddheshwar, P. G. (2023). Gravity-modulated Rayleigh–Bénard convection in a Newtonian liquid bounded by rigid–free boundaries: a comparative study with other boundary conditions. Journal of Engineering Mathematics, 139(1), 5. https://doi.org/10.1007/s10665-023-10260-z 
[9]    Getling, A. V. (2012). Rayleigh-benard convection. Scholarpedia, 7(7), 7702.
[10]    Gresho, P. M., and Sani, R. L. (1970). The effects of gravity modulation on the stability of a heated fluid layer. Journal of Fluid Mechanics, 40(4), 783-806. https://doi.org/10.1017/S0022112070000447
[11]    Gupta, J. R., and Kaushal, M. B. (1988). Rotatory hydromagnetic double-diffusive convection with viscosity variations. Journal of Mathematical and Physical Sciences, 22(3), 301-320. 
[12]    Gupta, J. R., Sood, S. K., and Bhardwaj, U. D. (1984). On Rayleigh-Bénard convection with rotation and magnetic field. Zeitschrift für angewandte Mathematik und Physik ZAMP, 35, 252-256.
[13]    Han, D., Hernandez, M. and Wang, Q. (2019). Dynamic bifurcation and transition in the Rayleigh-Benard convection with internal heating and varying gravity, Communication in Mathematical Sciences, 17(1), 175-192. https://doi.org/10.4310/cms.2019.v17.n1.a7
[14]    Kumar, R., Manglesh, A. and Kumar, A. (2024). A Study of the Effect of Variable Gravity, Magnetic Field Dependent Viscosity and Uniform Rotation on the Stability of Ferromagnetic Convection for Free-Free Boundaries, Journal of Rajasthan Academy of Physical Sciences, 23 (3and4), 233-255.
[15]    Kumar, R., Manglesh, A. and Kumar, A. (2024). Analysis of the effect of variable gravity on stationary convection in Rayleigh-Bénard convection for free-free, rigid-rigid and rigid-free boundary conditions, Int. J. Stat. Appl. Math., 9(6), 08-16. DOI: 10.22271/maths.2024.v9.i6a.1879
[16]    Pant, S. and Algehyne, E. A. (2022). Convection in a Ferromagnetic Fluid Layer Influenced by Changeable Gravity and Viscosity, Mathematics, 10, 1737-1757. https://doi.org/10.3390/math10101737
[17]    Pellew, A., and Southwell, R. V. (1940). On maintained convective motion in a fluid heated from below. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 176(966), 312-343.
[18]    Pradhan, G. K., and Samal, P. C. (1987). Thermal stability of a fluid layer under variable body forces. Journal of mathematical analysis and applications, 122(2), 487-495. https://doi.org/10.1016/0022-247X(87)90280-0
[19]    Pradhan, G. K., Samal, P. C., and Tripathy, U. K. (1989). Thermal stability of a fluid layer in a variable gravitational field. Indian J. pure appl. Math, 20(7), 736-745. 
[20]    Prakash, J., Bala, R., and Vaid, K. (2014). On the principle of the exchange of stabilities in rotatory triply diffusive convection. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 84(3), 433-439. 
[21]    Rayleigh, L. (1916). LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the underside. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32(192), 529-546. https://doi.org/10.1080/14786441608635602
[22]    Saunders, B. V., Murray, B. T., McFadden, G. B., Coriell, S. R., and Wheeler, A. A. (1992). The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid. Physics of Fluids A: Fluid Dynamics, 4(6), 1176-1189. https://doi.org/10.1063/1.858236
[23]    Shekhar, S., Ragoju, R., and Yadav, D. (2022). The effect of variable gravity on rotating Rayleigh–Bénard convection in a sparsely packed porous layer. Heat Transfer, 51(5), 4187-4204. https://doi.org/10.1002/htj.22495
[24]    Singh, J., and Singh, S. S. (2013). Instability in temperature modulated rotating Rayleigh–Benard convection. Fluid Dynamics Research, 46(1), 015504. DOI: 10.1088/0169-5983/46/1/015504
[25]    Straughan, B. (1989). Convection in a variable gravity field. Journal of mathematical analysis and applications, 140(2), 467-475. https://doi.org/10.1016/0022-247X(89)90078-4
[26]    Straughan, B. (2013). The energy method, stability, and nonlinear convection (Vol. 91). Springer Science and Business Media.
[27]    Suma, S. P., Gangadharaiah, Y. H., and Indira, R. (2011). Effect of throughflow and variable gravity field on thermal convection in a porous layer. Int. J. Eng. Sci. Tech, 3, 7657-7668.
[28]    Tagare, S. G., Babu, A. B., and Rameshwar, Y. (2008). Rayleigh–Benard convection in rotating fluids. International journal of heat and mass transfer, 51(5-6), 1168-1178.Yadav, D. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.052
[29]    Yadav, D. (2020). The onset of Darcy‐Brinkman convection in a porous medium layer with vertical throughflow and variable gravity field effects. Heat Transfer, 49(5), 3161-3173. https://doi.org/10.1002/htj.21767





Author/Editor Information

Dr. Sanjay Kango

Associate Professor

Dr. Poonam Sharma

Assistant Professor

Mr. Pawan Kumar

Assistant Professor

Dr, Ashok Kumar

Assistant Professor

Dr. Sunil Kumar Sharma

Assistant Professor

Dr. Nirmal Singh

Assistant Professor