REFERENCES:
1. Minic, A., Jovanovic, L., Bacanin, N., Stoean, C., Zivkovic, M., Spalevic, P., ... and Stoean, R. (2023). Applying recurrent neural networks for
anomaly detection in electrocardiogram sensor data. Sensors, 23(24), 9878.
2. Li,
H., and Boulanger, P. (2022). Structural anomalies detection from electrocardiogram (ECG) with
spectrogram and handcrafted features. Sensors, 22(7),
2467.
3. Siontis, K. C., Noseworthy, P. A., Attia,
Z. I., and Friedman, P. A. (2021).
Artificial intelligence-enhanced electrocardiography in cardiovascular
disease management. Nature Reviews
Cardiology, 18(7), 465-478.
4. Vetter, V. L., Elia,
J., Erickson, C., Berger, S., Blum, N., Uzark, K., and Webb,
C. L. (2008). Cardiovascular
monitoring of children and adolescents with heart disease receiving medications
for attention deficit/hyperactivity disorder: a scientific statement from the American
Heart Association Council
on Cardiovascular Disease in the Young Congenital Cardiac
Defects Committee and the Council
on Cardiovascular Nursing. Circulation, 117(18), 2407-2423.
5.
Nannavecchia, A., Girardi, F., Fina, P. R., Scalera,
M., and Dimauro, G. (2021).
Personal heart health
monitoring based on 1D convolutional neural network. Journal of Imaging, 7(2), 26.
6. Lu,
H., Feng, X., and Zhang, J. (2024).
Early detection of cardiorespiratory
complications and training monitoring using wearable ECG sensors and CNN. BMC
Medical Informatics and Decision Making, 24(1), 194.
7. Khan Mamun, M. M. R., and Elfouly, T. (2023). AI-Enabled Electrocardiogram Analysis for Disease Diagnosis. Applied
System Innovation, 6(5), 95.
8.
Mäkikallio, T. H., Seppänen, T., Niemelä, M., Airaksinen, K. J., Tulppo,
M., and Huikuri, H. V. (1996). Abnormalities in beat to beat complexity of heart rate dynamics
in patients with a previous
myocardial infarction. Journal
of the American College of
Cardiology, 28(4), 1005-1011.
9. Saleh, M., and Ambrose,
J. A. (2018). Understanding myocardial infarction. F1000Research, 7.
10. Huikuri, H. V., Seppänen, T., Koistinen, M. J., Airaksinen, K. J., Ikaheimo,
M. J., Castellanos, A., and Myerburg, R. J. (1996).
Abnormalities in beat-to-beat
dynamics of heart rate before
the spontaneous onset of life-threatening ventricular tachyarrhythmias
in patients with prior myocardial infarction. Circulation, 93(10), 1836-1844.
11.
Casolo, G. C., Stroder,
P., Signorini, C., Calzolari, F., Zucchini, M., Balli, E., ...
and Lazzerini, S. (1992). Heart
rate variability during
the acute phase of
myocardial infarction. Circulation, 85(6), 2073-2079.
12. Agarap, A. F. (2017).
An architecture combining convolutional neural network (CNN) and support vector
machine (SVM) for image classification. arXiv preprint arXiv:1712.03541.
13.
Hao, R., Namdar, K., Liu, L., Haider, M. A., and Khalvati, F. (2021). A
comprehensive study of data augmentation strategies for prostate
cancer detection in
diffusion-weighted MRI using convolutional neural networks. Journal of Digital Imaging,
34, 862-876.