Conference Proceeding

Author(s): Ankur Ojha, Manjunatha R, Akshay Mouli, Darshan S, Prassanna N, Tanaya Mandava

Email(s): r.manjunatha@jainuniversity.ac.in

Address: Ankur Ojha, Manjunatha R*, Akshay Mouli, Darshan S, Prassanna N, Tanaya Mandava
Department of Data Science and Analytics, Jain (Deemed- to-be University), Bengaluru, Karnataka, India.,
*Corresponding Author

Published In:   Conference Proceeding, Proceeding of ICONS-2024

Year of Publication:  July, 2025

Online since:  July 11, 2025

DOI: Not Available

ABSTRACT:
Cardiovascular diseases (CVDs) are a leading cause of global mortality, emphasizing the need for efficient diagnostic tools. Electrocardiograms (ECGs) are essential for diagnosing heart conditions but are often prone to human error and inefficiencies in large-scale data analysis. This research develops an automated ECG classification system using convolutional neural networks (CNNs) to detect anomalies. The system classifies ECG images into four categories: Myocardial Infarction, Abnormal Heartbeat, History of Myocardial Infarction, and Normal heart activity. With a trained CNN model, achieving over 90% accuracy, the project demonstrates its potential for clinical application. The model is integrated into a web-based interface via Streamlit, allowing real-time ECG image uploads for immediate classification results. This tool is designed to assist healthcare professionals, particularly in remote areas, offering rapid and accurate diagnosis. The system's broader impact lies in enhancing diagnostic efficiency, reducing manual interpretation reliance, and facilitating timely cardiac interventions. Future work includes integrating the model with wearable ECG devices for real-time, personalized healthcare monitoring.


Cite this article:
Ankur Ojha, Manjunatha R, Akshay Mouli, Darshan S, Prassanna N, Tanaya Mandava. Monitoring And Detecting Anomalies in Cardiovascular Readings with Special Reference to Electrocardiogram Data. Proceeding of ICONS-2024. 35-39


REFERENCES:

1.      Minic, A., Jovanovic, L., Bacanin, N., Stoean, C., Zivkovic, M., Spalevic, P., ... and Stoean, R. (2023). Applying recurrent neural networks for anomaly detection in electrocardiogram sensor data. Sensors, 23(24), 9878.

2.      Li, H., and Boulanger, P. (2022). Structural anomalies detection from electrocardiogram (ECG) with spectrogram and handcrafted features. Sensors, 22(7), 2467.

3.      Siontis, K. C., Noseworthy, P. A., Attia, Z. I., and Friedman, P. A. (2021). Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology, 18(7), 465-478.

4.      Vetter, V. L., Elia, J., Erickson, C., Berger, S., Blum, N., Uzark, K., and Webb, C. L. (2008). Cardiovascular monitoring of children and adolescents with heart disease receiving medications for attention deficit/hyperactivity disorder: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young Congenital Cardiac Defects Committee and the Council on Cardiovascular Nursing. Circulation, 117(18), 2407-2423.

5.      Nannavecchia, A., Girardi, F., Fina, P. R., Scalera, M., and Dimauro, G. (2021). Personal heart health monitoring based on 1D convolutional neural network. Journal of Imaging, 7(2), 26.

6.      Lu, H., Feng, X., and Zhang, J. (2024). Early detection of cardiorespiratory complications and training monitoring using wearable ECG sensors and CNN. BMC Medical Informatics and Decision Making, 24(1), 194.

7.      Khan Mamun, M. M. R., and Elfouly, T. (2023). AI-Enabled Electrocardiogram Analysis for Disease Diagnosis. Applied System Innovation, 6(5), 95.

8.      Mäkikallio, T. H., Seppänen, T., Niemelä, M., Airaksinen, K. J., Tulppo, M., and Huikuri, H. V. (1996). Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction. Journal of the American College of Cardiology, 28(4), 1005-1011.

9.      Saleh, M., and Ambrose, J. A. (2018). Understanding myocardial infarction. F1000Research, 7.

10.   Huikuri, H. V., Seppänen, T., Koistinen, M. J., Airaksinen, K. J., Ikaheimo, M. J., Castellanos, A., and Myerburg, R. J. (1996). Abnormalities in beat-to-beat dynamics of heart rate before the spontaneous onset of life-threatening ventricular tachyarrhythmias in patients with prior myocardial infarction. Circulation, 93(10), 1836-1844.

11.   Casolo, G. C., Stroder, P., Signorini, C., Calzolari, F., Zucchini, M., Balli, E., ... and Lazzerini, S. (1992). Heart rate variability during the acute phase of myocardial infarction. Circulation, 85(6), 2073-2079.

12.   Agarap, A. F. (2017). An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image classification. arXiv preprint arXiv:1712.03541.

13.   Hao, R., Namdar, K., Liu, L., Haider, M. A., and Khalvati, F. (2021). A comprehensive study of data augmentation strategies for prostate cancer detection in diffusion-weighted MRI using convolutional neural networks. Journal of Digital Imaging, 34, 862-876.

 

 

 





Author/Editor Information

Dr. Vani. R

Professor

Dr. Apurva Kumar R. Joshi

Assistant Professor and Program Head