Conference Proceeding

Mathematics in Space and Applied Sciences (ICMSAS-2023)
ICMSAS-2023

Subject Area: Mathematics
Pages: 331
Published On: 03-Mar-2023
Online Since: 04-Mar-2023

 Read More >>

Author(s): Suresh C. Jaryal, Ayan Chatterjee

Email(s): suresh.fifthd@gmail.com , ayan.theory@gmail.com

Address: Suresh C. Jaryal #1, 2 , Ayan Chatterjee†1
1Department of Physics and Astronomical Science, Central University of Himachal Pradesh, Dharamshala 176215, India
2Department of Physics and Astronomical Sciences, Central University of Jammu, Samba, J&K 181143, India
*Corresponding Author

Published In:   Conference Proceeding, Mathematics in Space and Applied Sciences (ICMSAS-2023)

Year of Publication:  March, 2023

Online since:  March 04, 2023

DOI: Not Available

ABSTRACT:
We investigate the formation and evolution of horizons during gravitational collapse of dust matter in 4D Einstein- Gauss- Bonnet gravity. The singularity forms as the end state of the collapse and depending on time formation of these horizons/ marginally trapped surfaces (MTT), the collapse leads to either a black hole or a massive naked singularity. The effects of the GB coupling parameter (λ) and the Misner- Sharp mass function F(t,r) on the formation of MTT and time of formation of central singularity are investigated. Our results show that the relationship between GB coupling parameter (λ) and the Misner- Sharp mass function F(t,r) determines the end state of collapse to be either black hole or naked singularity. We find that, if F(t,r)< 2√λ , there are no trapped surfaces/ MTT on the initial Cauchy hypersurface and the central singularity if massive and naked. However, for F(t,r) ≥ 2√λ , central singularity is always hidden/ censored by marginally trapped surface of topology S^2×R which eventually becomes null and coincides with the event horizon at equilibrium. We validated these results for various matter density profiles using analytic and numerical techniques.


Cite this article:
Suresh C. Jaryal, Ayan Chatterjee. Marginally Trapped Surfaces in 4D Einstein-Gauss-Bonnet Theory. Proceedings of 2nd International Conference on Mathematics in Space and Applied Sciences. 2023;1:117-120.


REFERENCES:

1.              S. W. Hawking, and G. R. Ellis, The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge 1975.

2.              Robert M. Wald, General Relativity. University of Chicago Press, 1984.

3.              P. S. Joshi, Gravitational Collapse and Spacetime Singularities. Cambridge University Press, Cambridge, England, 2007.

4.              R. M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, Chicago Lectures in Physics. University of Chicago Press, Chicago, IL, 10, 1995.

5.              I. Buchbinder, S. Odintsov and I. Shapiro, Effective action in quantum gravity. IOP, Bristol, UK, 1992.

6.              M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety. Cambridge University Press, 2019.

7.              T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rept. 513, 1 (2012).

8.              C. M. Will, Living Rev. Rel. 17, 4 (2014).

9.              C. Lanczos, Annals Math. 39, 842-850 (1938).

10.           D. Lovelock, J. Math. Phys. 12, 498-501 (1971).
11.           D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985); J.T. Wheeler, Nucl. Phys.B 268 737 (1986).
12.           F.R. Tangherlini, Nouvo Cim. 27, 636 (1963).
13.           D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020).
14.           H. Lu, Y. Pang, Phys. Lett. B 809, 135717 (2020).
15.           W.Y. Ai, Commun. Theor. Phys. 72 (9), 095402 (2020); P.G.S. Fernandes, P. Carrilho, T. Clifton, D.J. Mulryne, Phys. Rev. D 102 (2), 024025 (2020); S. Mahapatra, Eur. Phys. J. C 80 (10), 992  (2020); K. Aoki, M.A. Gorji, S. Mukohyama, Phys. Lett. B 810, 135843 (2020); T. Kobayashi, J. Cosmol. Astropart. Phys. 07, 013  (2020).
16.           R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
17.           S. C. Jaryal and A. Chatterjee, Phys. Dark Univ. 39, 101171 (2023).
18.           A. Chatterjee,  A. Ghosh and S. C. Jaryal, Phys. Rev. D 106, no.4, 044049 (2022).




Author/Editor Information

Dr. Sanjay Kango

Department of Mathematics, Neta Ji Subhash Chander Bose Memorial, Government Post Graduate College, Hamirpur Himachal Pradesh-177 005, INDIA