REFERENCES:
1.
Jeevanandam,
J.; Barhoum, A.; Chan, Y.; Dufresne, A.; Danquah, M.K. Review on nanoparticles
and nanostructured materials: History, sources, toxicity, and regulations.
Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [CrossRef] [PubMed
2.
Pan, Y.;
Du, X.; Zhao, F.; Xu, B. Magnetic nanoparticles for the manipulation of
proteins and cells. Chem. Soc. Rev. 2012, 41, 2912− 2942.
3.
ACS Med.
Chem. Lett. 2013, 4, 147−149 surface modification and applications in
chemotherapy. Adv. Drug Delivery Rev. 2011, 63, 24−46
4.
Ferric Christian,
Edith, Selly, Dendy Adityawarman, Antonius Indarto "Application of nanotechnologies
in the energy sector: A brief and short review" Front. Energy 2013, 7(1):
6–18 DOI 10.1007/s11708-012-0219-5
5.
MineyKurtey,
HaydarGoksu, HusnuGerengi, Hakan Burhan, Mohd Imran Ahamed, Fatih Sen,
"Magnetic nanomaterial for Lithium-ion batteries", Lithium-Ion
Batteries: Materials and Applications, Material Research Foundations (80)
2020,123-147, http//:doi.org 10.21741/9781644900918-5.
6.
Gul, Saima
Khan, Sher Bahadar, Rehman, Inayat Ur, Khan, Murad Ali Khan, M. I. (2019). A
Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics.
Frontiers in Materials, 6, 179–. doi:10.3389/fmats.2019.00179
7.
Huige Wei
&Hongbo Gu & Jiang Guo &Dapeng Cui &Xingru Yan & Jurong Liu
&Dapeng Cao &Xuefeng Wang &Suying Wei &Zhanhu Guo,
"Significantly enhanced energy density of magnetite/polypyrrole
nanocomposite capacitors at high rates by low magnetic fields", Adv Compos
Hybrid Mater. (1) 2018, 127-134. DOI 10.1007/s42114-017-0003-4
8.
Pullar,
R.C. (2012) hexagonal ferrites, 57, 1191–1334.
9.
Bárbara
Socas-Rodríguez , Antonio V. Herrera-Herrera , María Asensio-Ramos ,and Miguel
Ángel Rodríguez-Delgado, "Recent Applications of Magnetic Nanoparticles in
Food Analysis". Processes 2020, 8, 1140; doi:10.3390/pr8091140.
10.
Mohd
Shabbir, Shakeel Ahmed, and Javed N. Sheikh (eds.) Frontiers of Textile
Materials: Polymers, Nanomaterials, Enzymes, and Advanced Modification
Techniques, (135–152) © 2020 Scrivener Publishing LLC
11.
Abhas Manu,
Manoj Kumar Gupta, "Application of nanomaterials in automobile
industry", Applied Innovative Research, Vol. 2, March 2020, pp. 107-113.
12.
Virender
Pratap Singh, Gagan Kumar, Arun, RadheyShyam Rai, M.A. Valente, R. K. Kotnala
and M. Singh Structural, magnetic and Mössbauerstudy of La-doped Barium
hexaferrite, processed via sol-gel technique,", Ceramics International
(Elsevier), 42 (2016),5011 -5017, ISNN:0272-8842, Impact factor -2.758.
13.
Virender
Pratap Singh, Gagan Kumar, R. K. Kotnala, Jyoti Shah, Sucheta Sharma, K. S.
Daya, Khalid M. Batoo, M. Singh, "Remarkable magnetization with ultra-low
loss BaGdxFe12-xO19 nano hexaferrite for applications up to C-band", J.
Magn. Magn. Mater., (Elsevier) 378 (2015) 478–484, ISSN : 0304, Impact factor
-2.357.
14.
Virender
Pratap Singh, Gagan Kumar, Jyoti Shah, Arun Kumar, R. K. Kotnala, and Mahavir
Singh, "Investigation of super-exchange interactions in BaHoxFe12-xO19
(0.1 ≤ x ≤ 0.4) nano-hexaferrite and exploration at ultra high-frequency
region", Ceramics International, (Elsevier) 41 (2015) 11693–11701,
ISNN:0272-8842, Impact factor -2.758.
15.
AjeyLele,
"Role of Nanotechnology in Defence Strategic Analysis" , Vol. 33, No.
2, March 2009, 229–241
16.
Lee KJ,
Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN. In vivo imaging of transport
and biocompatibility of single silver nanoparticles in the early development of
zebrafish embryos. ACS Nano 2007;1:133–143. [PubMed: 19122772]
17.
Lam CW,
James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon
nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci
2004;77:126–134. [PubMed: 14514958]
18.
Oberdorster
G, Sharp Z, Atudorei A, Elder A, Gelin G, Luntsm A, Kreyling W, Cox C.
Extrapulmonary translocation of ultrafine carbon particles following whole-body
inhalation exposure of rats. J. Toxicol. Environ. Health Part A
2002;65:1531–1543. [PubMed: 12396867]
19.
Oberdorster
G, Sharp Z, Atudonrei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of
inhaled ultrafine particles to the brain. Inhal. Toxicol2004;16:437–445.
[PubMed: 15204759]
20.
Mortensen
LJ, Oberdorster G, Pentland AP, DeLouise LA. In vivo skin penetration of
quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett
2008;8:2779–2787. [PubMed: 18687009]
21.
Zhang LW,
Monteiro-Riviere NA. Assessment of quantum dot penetration into intact,
tape-stripped, abraded, and flexed rat skin. Skin Pharm. Physiol 2008;21:
166–180.
22.
Baroli B,
Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of
metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol
2007;127:1701–1712. [PubMed: 17380118]
23.
Rouse JG,
Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA. Effects of
mechanical flexion on the penetration of fullerene amino acid-derivatized
peptide nanoparticles through skin. Nano Lett 2007;7:155–160. [PubMed:
17212456]
24.
Hussain SM,
Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of
manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol.
Sci 2006;92:456– 463. [PubMed: 16714391]
25.
Semmler M,
Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling W. Long-term
clearance kinetics of inhaled ultrafine insoluble iridium particles from the
rat lung, including transient translocation into secondary organs. Inhal.
Toxicol2004;16:453–459. [PubMed: 15204761]
26.
Oberdorster
G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline
evolving from studies of ultrafine particles. Environ. Health
Perspect2005;113:823–839. [PubMed: 16002369]
27.
Oberdorster;
Ferin J, Lehnert BE. Correlation between particle size, in vivo particle
persistence, and lung injury. Environ. Health Perspect 2004;102: 173–179.
[PubMed: 7882925]
28.
Sharma HS,
Sharma A. Nanoparticles aggravate heat stress-induced cognitive deficits,
blood-brain barrier disruption, edema formation, and brain pathology. Prog.
Brain Res 2007;162: 245–273. [PubMed: 17645923]
29.
Warheit DB,
Webb TR, Colvin VC, Reed KL, Sayes CM. Pulmonary bioassay studies with
nanoscale and fine-quartz particles in rats: Toxicity is not dependent upon
particle size but on surface characteristics. Toxicol. Sci 2007;95: 270–280.
[PubMed: 17030555]
30.
Anderson
PJ, Wilson JD, Hiller FC. Respiratory tract deposition of ultrafine particles
in subjects with obstructive or restrictive lung disease. Chest 1990;97:
1115–1120. [PubMed: 2331906]
31.
Kreyling
WG, Semmler-Behnke M, Möller W. Ultrafine particle-lung interactions: Does size
matter? J. Aerosol Med 2006;19: 74–83. [PubMed: 16551218]
32.
Stahlhofen
W, Rudolf G, James AC. Intercomparison of experimental regional aerosol
deposition data. J. Aerosol Med 1989;2: 285–308.
33.
Connor EE,
Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by
human cells but do not cause acute cytotoxicity. Small 2005;1: 325–327.
[PubMed: 17193451]
34.
Goodman CM,
McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles
functionalized with cationic and anionic side chains. Bioconjugate Chem
2004;15: 897–900.
35.
White JML,
Powell AM, Brady K, Russell-Jones R. Severe generalized argyria secondary to
ingestion of colloidal silver protein. Clin. Exp. Dermat 2003;28: 254–256.
36.
Griffitt
RJ, Luo J, Gao J, Bonzongo J-C, Barber DS. Effects of particle composition and
species on toxicity of metallic nanomaterials in aquatic organisms. Environ.
Toxicol. Chem 2008;27: 1972– 1978. [PubMed: 18690762]
37.
Lu, P.J.;
Fang, S.W.; Chang, W.L.; Huang, S.C.; Huang, M.C.; Cheng, H.F. Characterization
of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by
comparing different measurement methods. J. Food Drug Anal. 2018, 26,
1192–1200. [CrossRef]
38.
Grassian
VH, O'Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. Inhalation
exposure study of titanium dioxide nanoparticles with a primary particle size
of 2 to 5 nm. Environ. Health Perspect2007;115:397–402. [PubMed: 17431489]
39.
Jin C-Y,
Zhu B-S, Wang X-F, Lu Q-H. Cytotoxicity of titanium dioxide nanoparticles in
mouse fibroblast cells. Chem. Res. Toxicol2008;21:1871–1877. [PubMed: 18680314]
40.
Hong FS,
Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. Effect of nano-TiO2 on the
photochemical reaction of chloroplasts of spinach. Biol. Trace Elem. Res
2005;105:269–279. [PubMed: 16034170]
41.
Yang F,
Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P. Influences of nano-anatase TiO2
on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res
2006;110:179–190. [PubMed: 16757845]
42.
Franklin
NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of
nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga
(pseudokirchneriellasubcapitata): The importance of particle solubility.
Environ. Sci. Technol 2007;41: 8484–8490. [PubMed: 18200883]
43.
Karlsson HL,
Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly
toxic: A comparison between metal oxide nanoparticles and carbon nanotubes.
Chem. Res. Toxicol 2008;21: 1726–1732. [PubMed: 18710264]
44.
Silva VM,
Corson N, Elder A, Oberdorster G. The rat ear vein model for investigating in
vivo thrombogenicity of ultrafine particles (UFP). Toxicol. Sci 2005;85:983.
[PubMed: 15772370]
45.
Gao X, Cui
Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with
semiconductor quantum dots. Nat. Biotechnol 2004;22: 969–976. [PubMed:
15258594]
46.
Wu X, Liu
H, Liu J, Haley K, Treadway J, Larson J. Immunofluorescent labeling of cancer
marker Her2 and other cellular targets with semiconductor quantum dots. Nat.
Biotechnol 2003;21: 41–46. [PubMed: 12459735]
47.
Chan WCW,
Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for
multiplexed biological detection and imaging. Curr. Opn. Biotechnol 2002;
13:40–46.
48.
Chen F,
Gerion D. Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term,
nontoxic imaging and nuclear targeting in living cells. Nano Lett 2004;
4:1827–1832.
49.
Dubertret
B, Skourides P, Norris D, Noireaux V, Brivanlou A, Libchaber A. In vivo imaging
of quantum dots encapsulated in phospholipid micelles. Science 2002; 298:1759–1762.
[PubMed: 12459582]
50.
Michalet X,
Pinaud F, Bentolila L, Tsay J, Doose S, Li J. Quantum dots for live cells, in
vivo imaging, and diagnostics. Science 2005;307(5709):538–544. [PubMed:
15681376].
51.
Lidke DS,
Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE. Quantum dot ligands
provide new insights into erbB/HER receptor-mediated signal transduction. Nat.
Biotechnol 2004;22: 198–203. [PubMed: 14704683].
52.
Zhang LW,
Yu WW, Colvin VL, Monteiro-Riviere NA. Biological interactions of quantum dot
nanoparticles in the skin and in human epidermal keratinocytes. Toxicol. Appl.
Pharmacol 2008;228: 200–211. [PubMed: 18261754].
53.
Sreekanth
K. M. and DebjyotiSahu, “Effect of iron oxide nanoparticle in bio digestion of
a portable food-waste digester”, Journal of Chemical and Pharmaceutical
Research, 2015, 7(9):353-359